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The potential biological removal (PBR) formula used to determine a reference point for human-caused mortality of marine mammals in the
United States has been shown to be robust to several sources of uncertainty. This study investigates the consequences of the quality of moni-
toring on PBR performance. It also explores stochastic and demographic uncertainty, catastrophic events, sublethal effects of interactions
with fishing gear, and the situation of a marine mammal population subject to bycatch in two fisheries, only one of which is managed. Results
are presented for two pinniped and two cetacean life histories. Bias in abundance estimates and whether there is a linear relationship between
abundance estimates and true abundance most influence conservation performance. Catastrophic events and trends in natural mortality
have larger effects than environmental stochasticity. Managing only one of two fisheries with significant bycatch leads, as expected, to a lower
probability of achieving conservation management goals, and better outcomes would be achieved if bycatch in all fisheries were managed.
The results are qualitatively the same for the four life histories, but estimates of the probability of population recovery differ.
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Introduction
Managing anthropogenic impacts on marine mammal popula-

tions often involves identifying the causes, computing levels of

impact that the populations can sustain, and implementing regu-

lations designed to achieve the management goals. The key sour-

ces of human-caused mortality for many marine mammal

populations are bycatch—entanglement, entrapment, and hook-

ing by commercial fishing gear—or entanglement in aquaculture

nets and ropes (Kemper et al., 2003; Read, 2005; Reeves et al.,

2013). Although there are other sources of human-caused mortal-

ity of marine mammals, there is a general consensus among scien-

tists and conservationists that bycatch mortality is the currently

dominant driver of human-caused population declines world-

wide, and the primary barrier to the recovery of many depleted

populations (Gales et al., 2003; Kovacs et al., 2012; Reeves et al.,

2013; Lewison et al., 2014; Avila et al., 2018). Sublethal effects

(e.g. a decrease in reproductive output) caused by interactions

with fishing gear are less well studied and seldom the focus of

management decisions (but see van der Hoop et al., 2016a,b).

The 1994 amendments to the 1972 US Marine Mammal

Protection Act (MMPA) created the potential biological removal

(PBR) approach to determine the level of human-caused mortal-

ity marine mammal populations could be sustain while still

allowing those populations to recover (Wade, 1998). The PBR ap-

proach is well suited to data-poor situations because the PBR for-

mula requires only a recent estimate of abundance. The PBR

formula (or variants thereof) has been applied to compute rec-

ommended limits on human-caused mortality for marine mam-

mal populations in many parts of the world (e.g. in the Baltic Sea:

Berggren et al., 2002; in New Zealand: Slooten et al., 2006; in

Canada: Stenson et al., 2012) and has been applied to other ani-

mals subject to human-caused mortality (e.g. birds and bats:

Diffendorfer et al., 2015).

The PBR formula is the product of three parameters: (i) a min-

imum estimate of abundance that “provides reasonable assurance

that the stock size is equal to or greater than the estimate”

(NMIN); (ii) one-half of the maximum intrinsic rate of population

growth (0.50 RMAX); and (iii) a recovery factor (FR) between 0.1

and 1.0 (Wade, 1998), i.e.

PBR ¼ NMIN0:50RMAXFR : (1)

Within the United States, the default values of the PBR param-

eters used in most management applications are: RMAX ¼ 0.04 for

cetaceans and 0.12 for pinnipeds; NMIN ¼ the lower 20th percen-

tile of the (lognormal) distribution for the most recent estimate

of abundance; and FR is selected depending on the conservation

status of the stock (lower values for poorer conservation status;

Barlow et al., 1995; Wade and Angliss, 1997; Wade, 1998; Anon,

2016).

The values for the parameters of (1) were determined by Wade

(1998) using simulations of a generic cetacean and a generic pin-

niped. Specifically, the value of the percentile of the distribution

used to compute NMIN was selected to achieve (i) a 0.95 probabil-

ity of rebuilding a stock to its maximum net productivity level

[MNPL, typically 50% of the stock’s carrying capacity (K)] within

100 years (the “recovery goal”), under ideal conditions when a

stock is initially at 0.3 K, and (ii) a 0.95 probability that a stock

starting at MNPL will still be at or above MNPL in 20 years.

Values for FR <1 were set to ensure that the recovery goal is

met for highly depleted stocks or when some of the “ideal”

assumptions of the simulations used to specify the percentile on

which NMIN is based are violated.

Use of simulation to evaluate the performance of management

systems is referred to as management strategy evaluation (MSE;

Bunnefeld et al., 2011; Punt et al., 2016). MSE involves develop-

ing models of the entire management system (monitoring, deci-

sion making, and implementation) and projecting the simulated

population forward to determine how well management objec-

tives might be achieved. MSE has been used to understand the be-

haviour of the PBR approach (Wade, 1998; Brandon et al., 2017;

Punt et al., 2018), and more generally to understand the behav-

iour of conservation and management systems, including those

for marine mammal populations subject to hunting and bycatch

(e.g. IWC, 2014, 2016, 2017a, b; Punt and Donovan, 2007; Punt

et al., 2016).

The MSE analyses conducted by Wade (1998) varied the value

of RMAX (0.04 or 0.12) and the precision of the abundance esti-

mate, NMIN [coefficient of variation (C.V.)¼ 0.2 or 0.8]. Wade

(1998) also considered eight uncertainties related to potential

biases in the estimates of RMAX, abundance, and mortality, the in-

terval between abundance surveys (4 or 8 years), and the value of

MNPL (0.45 or 0.70 K). The values of the parameters of (1) used

to apply the PBR approach in the United States are designed to

be robust to these uncertainties. Recent simulation studies have

explored the robustness of the PBR approach to other sources of

uncertainty. For example, Punt et al. (2018) examined the conse-

quences of demographic uncertainty and of transient age-

structure effects. The latter, in particular, were found to influence

the recovery probability of depleted populations, but it was also

shown that reducing FR from its default values could make the

PBR robust to these sources of uncertainty.

The ability of the PBR approach to achieve its goals depends

on the nature of how abundance is monitored. However, obtain-

ing frequent, precise, and unbiased estimates of abundance for

many marine mammals remains challenging. Consequently, this

article explores various combinations of factors influencing the

quality and quantity of the data on which PBR could be based.

Several sources of process uncertainty that have become evi-

dent in recent years could affect the performance of the PBR ap-

proach in achieving management objectives but have not yet been

explored analytically. Specifically, although Punt et al. (2018)

considered the effects of demographic uncertainty (individual

variation in birth and death rates), they did not consider the

effects of environmental stochasticity (probabilities of birth and

death rates that are correlated among individuals) or catastrophic

events, which are likely more consequential for management and

have been observed in marine mammal populations (e.g. Vidal

and Gallo-Reynoso, 1996; Preen, 2004; Van Bressem et al., 2014;

Lane et al., 2015). Other factors that could affect the performance

of the PBR approach include the sublethal effects of entangle-

ments in fishing gear (e.g. van der Hoop et al. 2016a, b), and the

mainly sublethal (e.g. reduced feeding or reproductive rates) but

sometimes lethal effects of noise from human activities (e.g. Cox

et al., 2006; Danil and St. Leger, 2011). The purpose of this study

is to develop and apply a modelling framework to examine the

effects of these uncertainties.

Another uncertainty considered in this study relates to the sit-

uation in which some, but not all, of the fisheries that impact a

marine mammal population are managed. The Fish and Fish

Product Import Provisions of the MMPA [Section 101(a)(2),

implemented in 2016 81 FR 54389; hereafter referred to as the

2 A. E. Punt et al.
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“Seafood Import Rule”] require that a harvesting nation’s regula-

tory programmes address intentional and incidental (bycatch)

mortality and serious injury to marine mammals in fisheries that

export fish to the United States. The regulations require nations

with fisheries that incur, or may incur, marine mammal bycatch

(Export Fisheries), to adhere to marine mammal bycatch moni-

toring and mitigation standards “comparable” to those applied to

US fisheries. To continue to import seafood to the United States,

any nation with one or more Export Fisheries is required to

“demonstrate that it had adopted and implemented . . . a regula-

tory program . . . that is comparable in effectiveness to the US

regulatory program.” By 2021, the United States intends to make

comparability findings to determine whether each nation’s ma-

rine mammal bycatch programme is “comparable” to that of the

United States. If a foreign fishery fails the comparability finding,

the fish or fish products from that fishery will be prohibited from

entering the United States until the country applies again and the

fishery is accorded a positive comparability finding. It is common

for a marine mammal population to be subject to bycatch in mul-

tiple fisheries, and it is possible that in some countries not all of

the fisheries with bycatch of marine mammals would be consid-

ered Export Fisheries if they do not export fish or fish products to

the United States and hence subject to the MMPA requirements.

We therefore test the robustness of the PBR approach to previ-

ously unrecognized or unconsidered types of uncertainty, cata-

strophic changes, and spatial differences in implementation.

Specifically, we asked: (i) what are the implications of uncertain-

ties in monitoring (experiment # 1), (ii) is the PBR approach ro-

bust to cases where birth-death processes are subject to additional

sources of process error (experiment # 2), (iii) is the PBR ap-

proach sufficient to enable populations to recover when there are

catastrophic mortality events and trends in natural mortality (ex-

periment # 2), and (iv) how will the PBR approach perform when

multiple fisheries cause bycatch from the same populations of

marine mammals but only some fisheries are managed (experi-

ment # 3)? The impacts of the uncertainties are evaluated for two

cetacean and two pinniped species, characterized by survival and

maturation rates for the humpback whale and the bottlenose dol-

phin (cetaceans) and a fur seal and a sea lion (pinnipeds).

Methods
Overview
An MSE involves four steps: (i) identifying the management

objectives and quantifying them using performance metrics, (ii)

developing and parameterizing a set of operating models, (iii)

identifying candidate management strategies, and (iv) projecting

the populations represented within the operating models forward

for each management strategy and computing performance met-

rics. The following sections outline (i) the operating model, (ii)

the simulation experiments, which relate to the management

strategies and how the operating model is specified, and (iii) the

performance metrics that quantify the probability of recovery of

depleted populations and the ability to maintain populations at

MNPL if they are already at that level.

Operating model
The operating model (Table 1) is an extension of the biological

model developed by Punt et al. (2018). It is an integer-based, age-

and sex-structured population dynamics model (T1.1). The

expected number of progeny (pups or calves, depending on the

species) each year depends on the number of females that have

reached the age of first parturition (T1.5) and a density-

dependent birth rate where the extent of density dependence is a

function of the abundance of animals aged 1 and older, relative to

K1þ (carrying capacity, or the number of animals aged 1 and

older at steady state if there had never been bycatch; T1.6). The

operating model allows for demographic uncertainty (binomial

probability, by age and sex, of being born or dying; T1.1 and

T1.3). It also allows for environmental stochasticity in birth rates

(normal error on the logit of the birth rate for cetaceans—which

ensures that the birth rate never exceeds 1—and lognormal for

pinnipeds, as the variation in birth rate for pinnipeds is con-

founded with variation in age-0 survival in the model; T1.4a and

b) and 1þ survival rate (normal error on the logit of annual sur-

vival rate; T1.8). The expected value of (T1.8) is not the expected

survival rate of animals of age a, so the value of ~Sa in (T1.8) is ad-

justed such that EðSt ;aÞ ¼ ~Sa using a numerical search algorithm.

The operating model allows the annual birth and death rates to

be correlated (T1.9b). Autocorrelation in birth and death rates

does not capture major mortality events [unusual mortality

events (UMEs) as they are referred to in the United States] so the

operating model includes the possibility that a “catastrophic

event” occurs (with probability WC) in which a proportion Q of

all animals in the population dies. The impacts of large-scale forc-

ing (such as climate change) could lead to increases in natural

mortality over time, which is reflected in the operating model by

a proportional decrease over time in ~Sa. Finally, the impacts of

sublethal effects on expected birth rates are modelled by reducing

the expected birth rate proportionally to the ratio of bycatch to

population size (T1.6). This involves reducing the birth rate by

ð1� sMt=N 1þ
t Þ where Mt is the bycatch mortality, N 1þ

t is the

number of animals aged 1 and older, and s determines the

strength of the sublethal effect (non-existent for s ¼ 0 and greater

for higher values of s).

To initiate the simulations, the number of animals by age and

sex at carrying capacity (year �300) is computed based on a pre-

specified value for the number of aged 1þ animals (K1þ), under

the assumption that the population size is equal to carrying ca-

pacity and has a stable age-structure and an equal sex-ratio. The

age and sex structure at the start of the first projection year (the

first year in which the management system is applied; year 0) is

computed by projecting the population forward to year 0 under a

constant probability of being bycaught and solving for this proba-

bility, �B
f

(i.e. B
f
t ¼ �B

f
), so that the number of aged 1þ animals

at the start of the first projection year relative to K1þ equals either

0.3 (depleted, according to the MMPA) or 0.5 (recovered or at

MNPL).

The operating model assumes that there are several (Nf)

fishery-types f (i.e. fishing fleets using similar fishing practices in

terms of bycatch risk to marine mammals), each of which causes

bycatch mortality. Human-caused mortality is hence the sum

over fishery types of the mortality by fishery type (T1.10). The

fishery types are assumed to fish sequentially for computational

ease, i.e. bycatch in fishery type 1 occurs first, followed by bycatch

in fishery type 2, etc. (T1.11). All animals aged 1 and older are as-

sumed to be equally vulnerable to bycatch, with calves/pups (i.e.

animals <1 year old) not being impacted directly [Studies (e.g.

Brandon et al., 2017) have shown that the results of long-term

projections are not very sensitive to age-specific vulnerability, but

that sex-bias towards females leads to lower rates of the recovery

of depleted populations.]. Equation (T1.11) sets the fully
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vulnerable removal rates (i.e. the removal rates of animals for

which vulnerability is highest) by fishery type so that the overall

cumulative removal rate is obtained given the sequential nature

of the fishery types (T1.12). The realized bycatch mortality rate is

beta-distributed about the expected rate with a C.V. of 0.3 [This

mimics the assumption of Wade (1998) that realized catches are

normally distributed about bycatch limits with a C.V. of 0.3]. The

value of the PBR is updated each time a survey estimate of abun-

dance becomes available.

The sampling error for the estimates of abundance is assumed

to be lognormal (T1.13). Allowance is made for the possibility

that there is a non-linear relationship between the expected value

of the abundance estimate and true abundance; at c¼ 0, the rela-

tionship is linear but for c> 0 the expected value of the abun-

dance estimate declines slower than true abundance such that at

c¼ 1 the expected abundance estimate is independent of true

abundance. Non-linearity between an estimate of abundance and

true abundance is not expected for well-designed surveys but

could occur when density for a surveyed region is extrapolated to

a population’s entire geographic range and changes in population

size do not occur uniformly across that range.

Scenarios
The operating model is parameterized for two species of cetaceans

and two species of pinnipeds (see Table 3 for the biological pa-

rameter values for each species). The maximum population

growth rate kMAX is set to 1.04 for the cetaceans and 1.12 for the

pinnipeds to match the assumptions of Wade (1998)—actual

rates of increase for cetaceans and pinnipeds typically differ

among species and populations within species (e.g. IWC, 2014 for

cetaceans). kMAX is not varied here because the effects of this un-

certainty are well known (e.g. Wade, 1998; Brandon et al., 2017;

Punt et al., 2018). Table 3 does not specify values for the birth

rate at unexploited equilibrium or in the limit of zero population

size. These values are computed so the population is at equilib-

rium when N 1þ
t ¼ K 1þ and so that the maximum rate of increase

equals kMAX, respectively.

We conducted three simulation experiments. All experiments

separately considered the four life history types, two levels for FR

(0.5 and 1.0), two levels for the ratio of initial aged 1þ abundance

to K1þ (0.3 and 0.5), and two levels of K1þ (10 000 000 and

1000). The first of these levels for K1þ is unrealistic in most cases

but was included to allow the effects of demographic stochasticity

to be quantified (it will be minimal for a K1þ of 10 000 000 but

perhaps consequential for a K1þ of 1000). For the ease of inter-

pretation (and to keep the volume of results to a reasonable

level), the experiments did not involve crossing all factors; for ex-

ample, experiments # 1 and # 2 considered only a single fishery

type (see Table 4 for the factors considered in each experiment

and corresponding parameter values and Table 5 for the three ex-

perimental designs).

Experiment # 1
This experiment explored the implications of assumptions re-

garding aspects of monitoring: the quality of available data, as

characterized by the frequency with which surveys are under-

taken; precision of the estimates of abundance; bias in estimates

of abundance; and extent of non-linearity in the relationship be-

tween estimated and true abundance. The operating model in-

cluded one fishery, demographic but not environmental

stochasticity and no catastrophic events and ignored the sublethal

effects of bycatch.

The levels for survey frequency, survey precision and survey

bias were based on those considered by Wade (1998), who ex-

plored the effects of each of these factors individually. Two levels

for the extent of non-linearity c in (T1.13) were considered (a lin-

ear relationship, c¼ 0; and one in which estimated abundance de-

clined more slowly than true abundance, c¼ 0.5). The latter

relationship describes a case of survey bias where the survey can-

not detect declines in abundance at the moment they occur, such

as could occur when density does not initially decline in preferred

core habitat areas (i.e. such as in the “Basin” model, MacCall,

1990). This type of survey bias was also considered in the tests of

the Revised Management Procedure by the Scientific Committee

of the International Whaling Commission with a similar size of

effect (IWC, 1992), and a value of c¼ 0.5 provides a reasonable

test of this type of survey bias.

Experiment # 2
This experiment explored the implications of environmental sto-

chasticity in birth and survival rates, catastrophic events, and sub-

lethal effects. The magnitude of variation for these effects is hard

to quantify for most pinnipeds and even more so for cetaceans

because such quantification requires time-series of estimates of

birth and survival, which are rare. However, such effects are plau-

sible and have been observed for some marine mammal species

(Supplementary S2). The values for the parameters governing en-

vironmental stochasticity and catastrophic events in the operating

model (Table 4) were selected based on literature values, which

are summarized in Supplementary S2. The estimates of variation

in Supplementary Table S2.1 implicitly included measurement er-

ror as well as true variation in biological parameters.

Consequently, the values in Table 4 were set to half of the point

estimates and the highest values (central and upper values respec-

tively) based on the literature values. Results are not shown for

simulations that included autocorrelation between survival and

birth rate because the empirical estimates of autocorrelation were

low (Supplementary S2) and because the initial analyses with

such autocorrelation (not shown) did not reveal this to be a ma-

jor factor influencing the values for the performance metrics even

when levels of autocorrelation far larger than those in

Supplementary S2 were considered. The simulations with correla-

tion between survival and birth rates were conducted for the cen-

tral values for variation in survival and birth rates (rSa ¼ 0.6; rb

¼ 0.4). There are almost no quantitative data on trends in natural

mortality and sublethal effects for marine mammals, so the results

for these trials need to be interpreted with more caution than

those for other cases. The operating model included one fishery

and a single monitoring scheme (4-year survey interval, abun-

dance C.V. ¼ 0.2, and a linear relationship between the estimates

of abundance and true abundance).

The values in Table 4 cover a broad range because there are

few data to inform their values and in general the time-series in

Supplementary S2 are quite short. As such, the results should be

considered to be exploratory rather than definitive, with the ac-

tual values likely varying among taxa and regions. The aim of the

analyses was therefore primarily to learn about the relative impor-

tance of the factors considered.

The results of projections with environmental stochasticity can

be hard to interpret so results are presented for both the case in

4 A. E. Punt et al.
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which management was based on the PBR approach as well as

when all human-caused removals are eliminated. Rather than

combining all sources of uncertainty, each source was examined

separately, which reduced the number of trials and eases interpre-

tation of the results.

Experiment # 3
This experiment considered the implications of managing only

one of two fisheries that bycatch animals incidentally from the

same marine mammal population. The operating model con-

tained two fisheries that impacted the same age and sex classes of

animals but differed in terms of the proportion of the population

that they affected. “Fishery 1” was nominally the fishery that

exports to the United States and was always managed according

to PBR. In this experiment, “Fishery 2” was not managed and

three scenarios explored variation in the relative impact of each

fishery on the marine mammal population (scenarios A–C in

Table 4). The operating model included demographic uncertainty

but not environmental stochasticity or catastrophic events, ig-

nored the sublethal effects of bycatch, and assumed the same

monitoring system as for experiment # 2.

Performance metrics
Following Wade (1998), Brandon et al. (2017) and Punt et al.

(2018), conservation performance was evaluated using the follow-

ing metrics:

(i) The probability that the number of animals aged 1þ is

greater than MNPL (0.5 K1þ) after 100 years. For this calcu-

lation, MNPL is taken to be 0.5 K1þ. Given the stochastic na-

ture of births, deaths and reproduction in the operating

model, the population will fluctuate about its carrying ca-

pacity in the absence of human-caused mortality rather than

reaching and staying at that size.

(ii) The lower fifth percentile of the ratio of the number of ani-

mals aged 1þ to K1þ after 100 years.

Wade (1998) identified a performance “standard” of a 95% prob-

ability of recovery to MNPL after 100 years for a population ini-

tially at 0.3 K with an MNPL of 0.5 K, and a 95% probability that

a stock initially at 0.5 K remains above 0.5 K after 20 years. We

also evaluated whether the lower fifth percentile of abundance af-

ter 100 years is at or above MNPL.

Results
Figure 1 shows time-trajectories of aged 1þ population size

(medians and 90% intervals across simulations by year) and

removals for eight trials for cetacean 1 (two values for FR, two val-

ues for initial depletion, and two values for carrying capacity)

from simulations based on a base-case set of specifications for

monitoring, a single fishery, with no environmental variation.

Three random individual replicate results are also provided to

better indicate among-replicate variation. The eight trials pertain

to experiment # 1 with a survey frequency of 4 years, and unbi-

ased abundance estimates with a C.V. of 0.2.

Table 1. The population dynamic equations underlying the operating model.

Equation
number Equation Description

Population
dynamics
T1.1 Ns

tþ1;a¼
BðCtþ1;0:5Þ if a¼0

BðNs
t;a�1�Ms

t;a�1;St;a�1Þ~St if 1� a< x

BðNs
t;x�1�Ms

t;x�1;St;x�1Þ~StþBðNs
t;x�Ms

t;x;St;xÞ~St if a¼x

8><
>:

Basic population dynamics

T1.2 Bðz; pÞ Binomial distribution with
parameters z and p

T1.3 Ct ¼ BðPt; btÞ Calf production

T1.4a bt ¼
�

1þ expð~~bt þ gb
t rbÞ

��1
; ~~bt ¼ lnð1=~bt � 1Þ Stochastic birth rate (cetaceans)

T1.4b bt ¼ ~bt expðgb
t rb � r2

b=2Þ Stochastic birth rate (pinnipeds)

T1.5 Pt ¼
Px

a¼ap
Nfem

t;a Breeding females

T1.6 ~bt ¼ beqmaxf0; 1þ ðbmax=beq � 1Þ½1� ðN1þ
t =K1þÞh�g 1� s Mt

N1þ
t

� �
Density-dependent birth rate

T1.7 N1þ
t ¼

P
s

Px
a¼1 Ns

t;a Number of animals aged 1 and older

T1.8 St;a ¼ exp
�

lnð1þ expð~Sa þ gs
trSaÞÞeMT t

�
Annual survival by age

T1.9a gb
t � Nð0; 1Þ; gs

t � Nð0; 1Þ Process errors in survival and birth rate

T1.9b gb
t ¼ qSbg

s
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

Sb

p
1t; 1t � Nð0; 1Þ

T1.10 Ms
t;a ¼

PNf

f¼1 Ms;f
t;a Human-caused mortality by sex and age

T1.11 Ms;f
t;a ¼ BðNs

t;a �
Pf�1

f 0¼1 Ms;f 0
t;a ;/

s;f
a

~B
f
tÞ Human-caused mortality by sex, age,

and fishery type
T1.12 ~B

f
t ¼ Bf

t=ð1�
Pf�1

f 0¼1 Bf 0
t Þ Effective removal rate by fishery type

Data generation
T1.13 N̂t ¼ b N1þ

t ðK1þ=N1þ
t Þ

c; eey�r2=2ey � Nð0; r2
NÞ Estimates of abundance

Table 2 provides the definitions for the symbols.
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As expected, the distributions for past and future population

size depend on carrying capacity, with the results for the higher

carrying capacity (K1þ ¼ 10 000 000) being almost deterministic

(Figure 1a–d). The distributions for relative abundance are much

broader for a K1þ of 1000 (Figure 1i–l). There is considerable var-

iation in human-caused removals because this variation is driven

primarily by the precision of the estimates of abundance

(Figure 1e–h and m–p), which is based on a C.V. of 0.2 for all of

the simulations in Figure 1. Removals are reduced in year 0 for

both levels of FR when the population is initially at 0.30 K1þ be-

cause the bycatch mortality prior to the first calculation of PBR

exceeds PBR, as well as when FR ¼ 0.5 and the population is ini-

tially at 0.5 K1þ. However, and as expected, the reduction in

removals is much greater for FR ¼ 0.5 (Figure 1e, g, m, and o).

The rate of recovery also depends on FR, with recovery to MNPL

occurring around year 45 for FR ¼ 0.5. Recovery probability for

FR ¼ 1 only reaches 0.4 when K1þ ¼ 1000 because of demo-

graphic uncertainty; in the nearly deterministic case, recovery

does not occur, but the population size trajectories are close to

MNPL at the end of the 100-year projection period and would

reach MNPL after a few additional years (Figure 2).

Experiment # 1
Figure 3 summarizes the results of experiment # 1 for cetacean 1

(see Supplementary Figure S3a–c for the remaining life histories).

As expected, the value of FR had the largest effect on the results,

with recovery being achieved with at least 95% probability for

most scenarios when FR ¼ 0.5 and unbiased estimates of abun-

dance, but much lower probabilities for the scenarios with an FR

of 1 or with a survey bias of 2 (Figure 3a). At the lower (more

conservative) recovery factor and unbiased surveys, the only cases

for which P(N1þ > MNPL) was consistently <0.95 and the lower

fifth percentile of abundance after 100 years was less than MNPL

were when the survey C.V. was 0.8 and there was a non-linear re-

lationship between the estimated and true abundance.

The second-largest effect came from the size of the survey bias

(the ratio of expected estimated abundance to true abundance). A

survey bias of 2 is essentially the same as doubling FR so the

results for FR ¼ 0.5 and a survey bias of 2 were similar to those

for FR ¼ 1 and a survey bias of 1. However, conservation perfor-

mance was very poor when FR ¼ 1 and survey bias was 2, with a

zero probability of being above MNPL after 100 years and a

greater than 0.05 probability of 5% of populations being rendered

extinct. A non-linear relationship between the expected estimate

of abundance and true abundance (c¼ 0.5), when there is a dif-

ference, led to a lower probability of achieving the recovery goal

compared to when there was a linear relationship.

The results were relatively insensitive to the C.V. of the abun-

dance estimates, although the lower fifth percentile of population

size after 100 years was lower with a higher C.V. (Figure 3b). The

results were also not very sensitive to survey frequency, although

the probability of recovery after 100 years was generally higher

when surveys were more frequent (except for the pinniped when

FR ¼ 1; see Supplementary Figure S3b and c). The effects of the

overall magnitude of carrying capacity on the results were as

expected from Brandon et al. (2017); i.e. recovery probability was

lower for K1þ ¼ 1000 than for K1þ ¼ 10 000 000 for FR ¼ 0.5.

The higher variability associated with a lower value for K1þmeant

that the recovery probability was higher for the lower K1þ

(Figure 3a), a result evident for the other experiments as well.

The results for a population initially at 0.5 K1þ were generally

slightly more optimistic than those for a population initially at

0.3 K1þ, but the relative performance among scenarios was similar

across initial depletion levels. Results are consequently only

reported for an initial population size of 0.3 K1þ for the remain-

ing simulation experiments.

Table 2. The symbols included in the specification of the operating
model.

Symbol Description

Bf
t Unconditional removal rate for fully vulnerable animals

during year t (i.e. the probability of a fully vulnerable
animal being removed during year t by fishery-type f)

~B
f
t Removal rate for fully vulnerable animals that have

survived fishery types 1,2,. . .,f � 1
Ct Number of calves at the start of year t
K1þ Carrying capacity in terms of the number of animals aged

1 and older
Mt Human-caused mortality during year t
Ms

t;a Human-caused mortality of animals of sex s and age a
during year t

Ms;f
t;a Human-caused mortality of animals of sex s and age a by

fishery-type f during year t
MT Linear trend in natural mortality over time
Nf Number of fishery types
N̂t Estimate of the number 1þ animals at the start of year t
Ns

t;a Number of animals of age a and sex s (m/fem), at the start
of year t

~N
fem
a Number of females if the number of calves is set to 1

N1þ
t Number of animals aged 1 and older at the start of year t

WC Probability of a catastrophic event
Pt Number of females that have reached the age of first

parturition (ap) at the start of year t
Q Catastrophic survival (Q � 1) ~St ¼ Q in catastrophic cases

and 1 otherwise
~Sa Expected survival rate for animals of age a
St;a Survival rate for animals of age a during year t
~St Annual survival multiplier [¼ Q with probability WC or

expð�MTtÞ) for t > 0]
ap Age-at-first parturition
bt Birth rate during year t
~bt Expected birth rate during year t
beq Birth rate when the population is at carrying capacity;

beq ¼ ð
Ps

a¼ap
~N

fem
a Þ

�1

bmax Birth rate in the limit of zero population size
C Extent of saturation (c < 1) in survey estimates of

abundance
X Plus-group age (values for the population dynamics

parameters, including human-caused mortality rates,
are the same from age x onwards)

b Extent of bias in the abundance estimate
/s;f

a Relative vulnerability of animals of age a and sex s to
fishery-type f

s Extent of sublethal effects on birth rate
qSb Correlation between survival and birth rate
h Shape parameter, which determines where MNPL occurs

relative to carrying capacity [computed from MNPL
using the equations in Punt (1999)]

rN The standard error of the observation errors, i.e.
r2

N ¼ ‘nð1þ C:V:2NÞ, where C.V.N is the coefficient of
variation about the true abundance

rb Standard deviation of the logit of birth rate
rSa Standard deviation of the logit of survival rate of animals

of age a
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Table 4. Factors considered in the analyses.

Factor Levels

Population dynamic related
Species types Pinniped-1, Pinniped-2, Cetacean-1, Cetacean-2
Carrying capacity, K1þ 1 000, 100 00 000
Initial depletion, v 0.3, 0.5
Maximum rate of increase, kmax 1.04 (whales), 1.12 (pinnipeds)
MNPL 0.5
C.V. of fishing mortality, C.V.f 0.3
Trends in natural mortality rate, MT 0, 0.005, 0.01
Variation in survival rate, rSa 0, 0.6,1.3 (see Supplementary Figure S1 for the implied distributions for survival)
Variation in birth rate, rb 0, 0.4, 0.5
Probability of a catastrophic event, WC 0, 0.05, 0.1
Extent of a catastrophic event on

survival, Q
1, 0.9, 0.5

Sublethal multiplier, k 1, 0.2, 0.01
Correlation between birth and survival

rates, qSb

0, 0.707, 0.9 (rSa ¼ 0.6; rb ¼ 0.4)

Fishery structure and impact
Number of fishery types 1, 2

Scenarios regarding allocation of human-
caused mortality to fishery type, Xf

Scenario Relative fishing mortality

1 2

A 0.7 0.3
B 0.5 0.5
C 0.3 0.7

Monitoring
Frequency with which abundance

estimates become available and
allowable bycatch/PBR is calculated

4, 8 years

Abundance estimate C.V. 0.2, 0.8
Abundance estimate bias, b 1, 2
Extent of density dependence in

estimates, c
0.5, 0

Management rules
Recovery factor, FR 0.5, 1.0
Fishery-type 2 removals Managed, constant bycatch mortality rate, constant removal

The values in bold are the reference values [i.e. values in the studies by Wade (1998)].

Table 3. The values for the biological and fishery parameters of the operating model.

Parameter Pinniped 1 Pinniped 2 Cetacean 1 Cetacean 2

Age-at-first parturition, ap 4 years 5 years 5 years (Zerbini et al., 2010) 7 yearsa

Calf/pup survival rate, S0 0.77 0.83 0.90 (Zerbini et al., 2010) 0.865 (Arso Civil
et al., 2019)

Adult survival rate,
Sa (a > 0)

0.88 [(Butterworth et al., 1995 cited in Wickens
and York (1997)]

0.95 (DeLong
et al., 2017)

0.95 (Zerbini et al., 2010) 0.951 (Speakman
et al., 2010)

Vulnerability Age 1þ Age 1þ Age 1þ Age 1þ
Plus-group age Age 10 Age 5 Age 15 Age 10
Maximum rate of

increase, kmax

1.12 1.12 1.04 1.04

The biological parameters (age-at-first parturition, calf survival rate, and adult survival rate) for the two cetaceans are represented by a baleen whale (character-
ized by the humpback whale Megaptera novaeangliae) and a toothed whale (characterized by the common bottlenose dolphin Tursiops truncatus). The two
pinniped species are represented by a fur seal (characterized by the Cape fur seal Arctocephalus pusillus) and a sea lion (characterized by the California sea lion
Eumetopias jubatus). Life histories for these characteristic species are re-scaled for performance-testing purposes, to have the same maximum growth rate values
as assumed by Wade (1998): 1.04 for cetaceans and 1.12 for pinnipeds.
aValue selected given the wide range of values reported in the literature (e.g. Stolen and Barlow, 2003; Wells, 2003; Fruet et al., 2015; a review by Vollmer and
Rosel, 2013).
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Figure 4 shows results for all four life history types for K1þ ¼
1000 and the two survey frequencies. The qualitative effects of

survey C.V., survey bias and the form of the relationship between

the abundance estimates and true abundance were the same for

all life history types (see Supplementary Figure S3a–c for the full

set of results). However, the values for the performance metrics

depended on life history. For example, the lower fifth percentiles

of population size after 100 years for the two cetaceans (columns

1–4) were mostly higher than those for the two pinnipeds (col-

umns 5–8) for the higher C.V.s.

Experiment # 2
Several of the factors considered in experiment # 2 (see Table 5)

were highly influential in terms of recovery probability and the

lower fifth percentile of population size after 100 years (Figure 5).

In particular, an increasing rate of natural mortality led to much

lower rates of recovery even for FR ¼ 0.5, but the rates of

recovery would be low even in the absence of bycatch (results not

shown).

Catastrophic events that reduced the population by 50% with

probability 0.1 reduced recovery probability to near zero for both

life histories. As expected, effects of catastrophic events that re-

duced the population by 90% with probability 0.05 were less se-

vere than those that reduced the population by 50% with

probability 0.1. The effects of catastrophic events on recovery

probability were slightly more marked for pinnipeds than ceta-

ceans and adopting FR ¼ 0.5 provided some robustness against

catastrophic events.

Environmental variation in survival rates reduced recovery

rates, with the effect of rSa ¼ 1.3 being quite substantial, particu-

larly for the pinniped (e.g. Figure 5a-B and b-B). The probability

of rebuilding was higher for the cetacean when there was varia-

tion in survival, K1þ ¼ 10 000 000 and FR ¼ 1, but this was be-

cause the recovery probability was zero for the baseline values for

the parameters of the operating model. The effects of environ-

mental variation in survival reduced the probability of recovery

and the lower fifth percentile of population size after 100 years

even in the absence of bycatch (Figure 6), but there were cases in

which a no-bycatch mortality scenario led to a greater than 95%

probability of being above MNPL after 100 years, whereas the

same could not be achieved with a PBR approach recovery factor

of FR ¼ 0.5. Using a PBR approach with FR ¼ 0.5 could achieve

similar recovery probabilities to a no-bycatch scenario for all life

history types except pinniped 1 when survival variation was low

(rSa< 1.3; Figure 6).

In general, recovery rates for pinniped life histories were more

sensitive than cetacean life histories to higher trends in natural

morality, variation in survival and variation in birth rate, whereas

catastrophic events appeared to have a stronger effect on cetacean

recovery probabilities than pinniped recovery probabilities.

Variation in birth rates led to lower recovery rates and proba-

bilities of being above MNPL, but the size of the effect (given the

chosen parameter values) was less than for environmental varia-

tion in survival. As before, the probability of being above MNPL

was higher for the cetaceans when there was environmental varia-

tion and FR ¼ 1, but this effect was evident for both levels of K1þ.

Sublethal effects, at least as modelled in this article, had relatively

Table 5. The scenarios considered in the analyses.

Factor

Experiment

1 2 3

Population dynamic related
Species All All All
Carrying capacity 10 000 000; 1 000 10 000 000; 1 000 100 000 000; 1 000
Initial depletion 0.3, 0.5 0.3, 0.5 0.3, 0.5
kmax 1.04/1.12 1.04/1.12 1.04/1.12
Trend in natural mortality rate 0 0, 0.005, 0.01 0
Variation in survival rate, rSa 0 0, 0.6, 1.4 0
Variation in birth rate, rb 0 0, 0.4, 0.5
Probability and (extent) of a catastrophic event, WC 0 (0) 0 (0), 0.1 (0.5), 0.05 (0.9) 0 (0)
Sublethal multiplier, k 1 1, 0.2, 0.01 1
Correlation between birth and survival rates, qSb 0 0, 0.707, 0.9 (rSa ¼ 0.6; rb ¼ 0.4) 0

Fishery structure and impact
Number of fishery types 1 1 2
Allocation scenarios N/A N/A A–C

Monitoring
Frequency with which abundance

estimates become available
4, 8 4 4

Abundance estimate C.V. 0.2, 0.8 0.2 0.2
Abundance estimate bias, b 1, 2 1 1
Survey non-linearity 0, 0.5 0 0

Management rules
Recovery factor (FR) 0.5, 1.0 0.5, 1.0 0.5, 1.0
Fishery-type 2 N/A N/A Managed, constant bycatch

mortality rate, constant
bycatch

Cases 512 416 288

Each experiment consisted of 1 000 replicates over 100 years for each trial. For definitions of “All”, see Table 3.
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small effects on recovery probability as did correlations between

the deviations in birth and survival rates.

Experiment # 3
Figure 7 shows the results for experiment # 3 for the four life his-

tories. As expected, conservation performance was almost always

poorer if there were two fisheries and only one was managed

(blue points vs. brown points) and negative consequences were

greater for scenario C (where the unmanaged fishery had a greater

bycatch mortality rate than the managed fishery). The exception

to this conclusion was the probability of rebuilding with FR ¼ 1

when removal of a constant number of animals by fishery 2 led to

higher values for the performance metrics (in some cases not

managing a second fishery that removes a constant number of

animals actually led to better conservation outcomes because the

PBR approach allowed bycatch mortality to increase as the popu-

lation recovered). In contrast, the lower fifth percentile of popula-

tion size after 100 years was always lower when the unmanaged

fishery removed a constant number of animals for the cetaceans.

Removing a constant number of animals led to higher values of

the lower fifth percentile of population size after 100 years for the

pinnipeds when FR ¼ 0.5, except in scenario C.

Discussion
Overview of results
The results presented here confirm previous results showing that

how populations and fisheries are monitored is consequential for

recovery when applying the PBR approach. They also confirm the

results of Punt et al. (2018) that recovery probability depends to

some extent on species life history, owing to demographic

Figure 1. Results of projections (population size, first and third rows of panels; removals, second and fourth rows of panels) for eight trials for
cetacean 1 [two levels for carrying capacity (K1þ), two values for FR, and two values for initial depletion]. The solid black line is the median,
and the shading covers 90% of the distributions. Also, shown are trajectories from three individual replicates.

Figure 2. Cumulative probability of recovery for the scenarios in
Figure 1 that start the projections from 0.3 K1þ. Results are shown
for (a) a carrying capacity of 10 000 000 and (b) a carrying capacity
of 1000.
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Figure 3. Summary of the results of experiment # 1 for cetacean 1 according to two performance metrics: (a) the probability that the
number of 1þ animals exceeds MNPL after 100 years and (b) the lower fifth percentile of the relative abundance (N1þ/K1þ) after 100 years.
Results are given for when the population is initially at 30% (depletion ¼ 0.3, first and third columns) and 50% (depletion ¼ 0.5, second and
fourth columns) of carrying capacity. Results are shown for two values of FR (0.5 and 1, columns 1–2 and 3–4, respectively), two values for
carrying capacity (K1þ ¼ 1000 and 10 000 000, rows 1–2 and 3–4, respectively), and eight scenarios regarding future monitoring, including
survey frequency (every 4 years, first and third rows; every 8 years, second and fourth rows), linearity between estimated and true abundance,
and survey C.V. and bias (see legend for symbols). The horizontal lines are MNPL (a) and 0.95 (b).
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stochasticity and transient age-structure effects. Of the factors re-

lated to monitoring, survey bias is clearly the strongest reason for

an inability to achieve management goals (see experiment # 1)

and is one reason that FR ¼ 0.5 was originally identified as a way

to address the effect of uncertainties (Barlow et al., 1995; Wade,

1998). The precision (C.V.) of the abundance estimates has a larger

effect on the two pinnipeds, confirming the expectation that species

with faster dynamics require more frequent monitoring.

The impact of variation in survival rate on recovery rate is

much greater than of variation in birth rate, because variation in

survival rate impacts all age-classes simultaneously, whereas vari-

ation in the birth rate impacts only a single age-class. In theory,

temporal autocorrelation in survival and birth rate compounds

the effects of variation, but the degree of autocorrelation found in

existing studies (Supplementary S2) is not high enough to have a

major effect on performance.

As expected, managing bycatch mortality in only one of the

two fisheries that impact a marine mammal population (experi-

ment # 3) leads to lower rates of recovery for depleted popula-

tions and lower probabilities of maintaining populations at

MNPL, with constant removals due to bycatch generally having a

major impact on these rates and probabilities. However, for most

cases, managing at least one of multiple fleets that impacts a ma-

rine mammal population using the PBR approach has conserva-

tion benefits, although clearly not to the extent that would be the

case if all fleets were managed.

Implications for PBR management
The intent of the US Congress in adding FR (with a possible range

from 0.1 to 1.0) to the definition of PBR in the US MMPA was to

ensure the recovery of populations to their optimum sustainable

population levels and to ensure that the time necessary for popu-

lations listed as endangered, threatened, and/or depleted to re-

cover was not significantly increased. This article does not

address the special issue of endangered or threatened species but

addressed the issue of whether depleted populations recover, and

how quickly. The use of FR < 1.0 allocates a proportion of

expected net production towards population growth and com-

pensates for uncertainties that might prevent population recov-

ery, such as biases in the estimation of NMIN and RMAX. Within

the PBR context, the choice of FR ¼ 0.5 as a default is intended as

a precautionary buffer against the uncertainties originally consid-

ered by Wade (1998). This value is used as a default for popula-

tions that are depleted, threatened, or of unknown status, with

the value allowed to be increased up to 1.0 when populations are

well studied and biases in estimation of NMIN and other parame-

ters are thought to be negligible (Anon, 2016). Punt et al. (2018)

found that transient age-structure effects lead to lower rates of re-

covery compared to the generalized logistic model on which the

analyses of Wade (1998) were based, but that PBR management

using FR ¼ 0.5 still leads to the recovery of depleted populations,

albeit at a slightly slower rate. Our results are broadly similar

Figure 4. Comparison of the results of experiment # 1 among the life history types (left four columns: cetaceans; right four columns:
pinnipeds). The results for each life history type pertain to the case in which K1þ ¼ 1000 and the population is initially at a depletion of 0.30
K1þ. The performance metrics for each analysis are: (a) the probability that the number of 1þ animals exceeds MNPL after 100 years and (b)
the lower fifth percentile of the relative abundance (N1þ/K1þ) after 100 years. The horizontal lines are MNPL and 0.95.

Robustness of potential biological removal 11

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsaa096/5903506 by guest on 16 N

ovem
ber 2020



Figure 5. Summary of the results of experiment # 2 for cetacean 1 and pinniped 1 when the population is initially at 0.30 K1þ. The
performance metrics for each analysis are: the probability that the number of 1þ animals exceeds MNPL after 100 years [P(rebuild)], and the
lower fifth percentile of the relative abundance after 100 years (i.e. “lower fifth percentile”). The scenarios are (A) increasing trends in natural
mortality; (B) increasing variation in survival; (C) increasing variability in birth rate; (D) increasing probability of a catastrophic event; (E)
increasing strength of sublethal effects; and (F) increasing correlation between birth and survival. Descriptions of the values used in each case
are found in Table 5.
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here; when the management scheme is challenged by various sce-

narios, the use of FR ¼ 0.5 often leads to achieving the manage-

ment objective, or at least being much closer than would be the

case when using FR ¼ 1.0, but there are important exceptions,

discussed below. The US guidelines also allow for FR to be ad-

justed to accommodate additional information and to allow for

management discretion as appropriate and consistent with the

goals of the MMPA, such as decreasing the value of FR for cases

where bycatch mortality is skewed towards reproductive females,

or where the population is known to be declining. We make a

similar recommendation regarding use of a lower value of FR for

another scenario (see below).

The results indicate that some sources of mortality (sublethal

effects) at realistic levels may be managed via the PBR approach,

but other sources of mortality (e.g. UMEs) can cause population

collapses regardless of bycatch levels. The results of experiment

# 2 should be interpreted in the context of how population size

changed even if there was no bycatch. For example, there is a high

probability of population collapse for the most rapid increase in

natural mortality simulated here, irrespective of whether bycatch

occurs. This demonstrates that UMEs can lead to collapses even

in populations in which bycatch is tightly managed and confirm

that PBR management cannot, and should not, be expected to ad-

dress uncertainties such as catastrophic events and decreasing

survival rates due to factors other than bycatch mortality.

However, given declining populations, the PBR formula reduces

the limit on human-caused mortality, and if a major reduction in

population size was to be detected, this could trigger a propor-

tional downward adjustment in the value of FR, at least as the

PBR approach is applied in the United States.

The parameter values of the operating model for experiment

# 2 reflect scenarios in which analyses are based on fairly limited

data, particularly in relation to sublethal effects and catastrophes,

and should be interpreted in that context rather than as estimates

for particular populations or regions. Nevertheless, the results for

experiment # 2 illustrate some possible consequences for marine

mammal populations when the assumptions of the PBR approach

are violated. Although sublethal effects for cetaceans and pinni-

peds may be mitigated via the PBR approach, populations with

catastrophic mortality events will not recover even if bycatch does

not occur. These results suggest that comprehensive conservation

plans should include bycatch as well as other potential threats

and limits to bycatch alone may not be sufficient for improving

population status.

Figure 6. Comparison of the results of the simulations in which there is variation (rSa) in survival rate among the life history types. The
upper row for each life history type is when bycatch mortality is zero for all years, and the lower row for each life history type is when
management is based on the PBR approach. The performance metrics for each analysis are the probability that the number of 1þ animals
exceeds MNPL after 100 years [P(rebuild)] and the lower fifth percentile of the relative abundance (N1þ/K1þ) after 100 years. The horizontal
lines are 0.95 and MNPL.
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When a marine mammal population is subject to bycatch in

multiple fisheries, only some of which are managed, the probabil-

ity of recovery and maintaining the population at MNPL is lower

and the performance goals are not achieved. However, this is to

be expected given that the PBR approach was not designed to ad-

dress situations where some portion of the human-caused mor-

tality is unmanaged. The modelling in the present study was

motivated to reflect multiple fisheries in a country where only

Figure 7. Summary of the results of experiment # 3 for the four life history types when the population is initially at 0.3 K1þ and K1þ ¼ 1000.
The horizontal lines are 0.95 and MNPL. Scenarios A, B, and C are explained in Table 4.
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some of the fisheries of concern are managed, but experiment # 3

could also be viewed as reflecting the situation of a population

physically distributed between multiple countries, only one of

which is managing bycatch mortality using the PBR approach.

These results have consequences for expectations about the im-

plementation and potential conservation benefits of the Seafood

Import Rule.

The results presented here are not particularly sensitive to en-

vironmental variation in birth rates (our results are based on in-

dependent perturbations in birth rates, but with very similar

results when there is autocorrelation in or among these perturba-

tions). However, this was not the case for environmental varia-

tion in survival rate. Specifically, the probability of recovery and

the lower fifth percentile of population size after 100 years did not

achieve the “performance standard” of 0.95 of MNPL with PBR

management and FR ¼ 0.5 owing to the effects of transient age-

structure effects and the time-lag inherent in age-structured pop-

ulation dynamics models (unlike the operating model of Wade,

1998). The performance standard would theoretically have been

possible with a lower value of FR, suggesting that there is capacity

in the PBR approach to buffer against this type of variation.

Environmental variation in survival rate is plausible and has been

demonstrated for cetaceans and pinnipeds based on existing data

(Supplementary S2). Consideration should be given to using a

lower value of FR for species for which there is evidence of con-

siderable variation in survival rates.

Future work
This article explored scenarios that can affect the performance of

the PBR approach, expanding upon the analyses conducted by

Wade (1998), Brandon et al. (2017) and Punt et al. (2018). We

see some key directions for future work. The first is to further re-

fine the scenarios for the parameters of the operating model. The

results of the scenarios tested here were particularly sensitive to

trends in natural mortality and were not sensitive to sublethal

effects that reduce the birth rate. However, the parameter values

governing these scenarios were largely guesses in the absence of

empirical data. Had there been a weaker trend in natural mortal-

ity and had the magnitude of sublethal effects been substantially

higher, the conclusions regarding which factor is more important

could have been reversed. Risk-based assessments of how changes

in natural mortality affect these populations should consider the

relative impacts of these two scenarios.

The second direction for future work is to uncover and stan-

dardize additional empirical data on time-varying processes so

that more realistic scenarios related to biological variation can be

included in future MSEs for marine mammals. The parameter

values for environmental variation in birth and survival rates are

based on the published information presented in Supplementary

S2. Field studies examining temporal variation and trends in nat-

ural mortality will eventually improve the ability to identify what

recovery trajectories might be under the PBR approach or similar

approaches. However, in the short term, it is likely that more

time-series exist that could have been analysed, but they are not

published for the species included in this study, or the results are

not expressed in units that make the series fully comparable. As

such, an effort to collate time-series of birth and survival rates for

cetaceans and pinnipeds should be undertaken.

A rigorous review of time-varying life history characteristics

should involve a hierarchical analysis that uses data from more

data-rich populations to estimate life history parameter values for

data-poor populations (see Trukhanova et al., 2018 who used

such a method to estimate natural mortality for phocid seals).

The sublethal effects of entanglement (including infection,

“debilitation” and other factors that can influence long-term sur-

vival or reproduction) have been recorded in pinnipeds (Fowler,

1987), common bottlenose dolphins (Tursiops truncatus; Wells

et al., 2008; Barco et al., 2010), and baleen whales (Cassoff et al.,

2011). Energetic costs related to entanglement have been quanti-

fied by van der Hoop et al. (2016a, b) and others. However,

these effects have yet to be related quantitively to likely

impacts on demographic parameters such as birth rates to enable

them to be included in models such as the operating model of

this article.

The article does not explore all possible factors that could im-

pact the performance of the PBR approach. For example, unlike

Brandon et al. (2017), we do not evaluate alternative vulnerability

patterns such as bycatch mortality being directed primarily at ju-

venile animals or pups/calves, and that mortality of a female with

a calf/pup will lead to the death of that calf/pup. In addition,

while environmental stochasticity in birth and death processes

means that carrying capacity is no longer a static concept, the op-

erating model does not consider long-term cycles in carrying ca-

pacity. This could be examined by either forcing trends in

carrying capacity or considering an operating model with

selection-delayed growth (e.g. Witting, 1997, 2003).

The simulations are based on “generic” species (archetypes),

using reasonably well-known biological parameters of humpback

whales, common bottlenose dolphins, a fur seal, and a sea lion.

There may be value in conducting case-specific simulations for

some populations for which more detailed biological data are

available. In particular, the simulations are based on the default

values for the maximum population growth rate kMAX (1.04 for

cetaceans and 1.12 for pinnipeds). This parameter is poorly

known for many species, but where available, alternatives could

be specified and used in simulations [e.g. maximum rates of in-

crease are higher for several humpback whale and southern right

whale (Eubalaena australis) populations than the PBR default;

IWC, 2014].

Finally, this article has evaluated the PBR approach. This ap-

proach has relatively limited data requirements. It would be

expected that management strategies that are based on additional

sources of data (e.g. time-series of removals and relative and ab-

solute abundance, demographic parameters) would outperform

the PBR approach. Simulations similar to those in which this arti-

cle is based could be used to evaluate the performance of such

strategies. For example, the Scientific Committee of the

International Whaling Commission has evaluated management

strategies tailored to harvesting by commercial and aboriginal

subsistence whaling that use more data than the PBR approach

(e.g. IWC, 2003, 2005, 2012).

Conclusion
The current values of the parameters in the PBR formula lead to

robustness to several sources of uncertainty, but this article shows

that PBR management cannot guarantee that the conservation

and management goals of the MMPA will be achieved when, for

example, natural mortality increases for reasons unrelated to by-

catch, unless the recovery factor FR is reduced substantially (and

perhaps not at all). Of the factors considered, environmental vari-

ation in survival rate had an appreciable effect on performance
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while variation in birth rate did not. The quality (bias in particu-

lar) and frequency of monitoring efforts impacted the likelihood

of achieving conservation objectives. Performance also varied by

life history type, and depended on how many fisheries removing

individuals from a population were subject to management.

While we have tested the PBR approach with the US Seafood

Import Rule specifically in mind, this article can be considered a

case study for the broader management issue of spatial variation

in management implementation. Shifts in the range and distribu-

tion of marine mammal populations, often bringing the animals

into areas with different governance (e.g. across national borders,

or from one fishing zone to another within a single country), are

ongoing and likely to continue in the future. Efforts to manage

the human activities that affect populations across their entire

range would enhance recovery efforts.

Overall, the PBR approach is a robust way to facilitate the re-

covery of depleted marine mammal populations and to maintain

them at MNPL, but it is important to remain cognizant of uncer-

tainties that were not accounted for when the PBR approach was

originally tested. More case-specific implications (e.g. popula-

tion- or species-specific values for RMAX and FR) are possible for

those cases where data indicate greater levels of uncertainty or

empirical evidence suggests lower (or higher) expected maximum

rates of population growth.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.

Data availability
All data are incorporated into the article and its online supple-

mentary material.
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