1,554 research outputs found

    Age-dependent association of white matter abnormality with cognition after TIA or minor stroke

    Get PDF
    ObjectiveTo investigate if the association between MRI-detectable white matter hyperintensity (WMH) and cognitive status reported in previous studies persists at older ages (>80 years), when some white matter abnormality is almost universally reported in clinical practice.MethodsConsecutive eligible patients from a population-based cohort of all TIA/nondisabling stroke (Oxford Vascular Study) underwent multimodal MRI, including fluid-Attenuated inversion recovery and diffusion-weighted imaging, allowing automated measurement of WMH volume, mean diffusivity (MD), and fractional anisotropy (FA) in normal-Appearing white matter using FSL tools. These measures were related to cognitive status (Montreal Cognitive Assessment) at age 6480 vs >80 years.ResultsOf 566 patients (mean [range] age 66.7 [20-102] years), 107 were aged >80 years. WMH volumes and MD/FA were strongly associated with cognitive status in patients aged 6480 years (all p < 0.001 for WMH, MD, and FA) but not in patients aged >80 years (not significant for WMH, MD, and FA), with age interactions for WMH volume (pinteraction = 0.016) and MD (pinteraction = 0.037). Voxel-wise analyses also showed that lower Montreal Cognitive Assessment scores were associated with frontal WMH in patients 6480 years, but not >80 years.ConclusionMRI markers of white matter damage are strongly related to cognition in patients with TIA/minor stroke at younger ages, but not at age >80 years. Clinicians and patients should not overinterpret the significance of these abnormalities at older ages

    Efficient second harmonic generation from thin films of V-shaped benzo[b]thiophene based molecules

    Get PDF
    We have designed an original approach for efficient Second Harmonic Generation of tailored V-shape benzo[b]thiophene molecular systems enabling versatile and flexible one-step, dry and technologically friendly thin film processing. The designed moieties show χ(2) values at least as high as the reference LiNbO3 single crystal, without poling processing and matching the constrains of integrated optical configuration for nonlinear optical devices. This may open the way to a new class of organic materials exploitable for photonic applications

    Superluminal Localized Solutions to Maxwell Equations propagating along a waveguide: The finite-energy case

    Get PDF
    In a previous paper of ours [Phys. Rev. E64 (2001) 066603, e-print physics/0001039] we have shown localized (non-evanescent) solutions to Maxwell equations to exist, which propagate without distortion with Superluminal speed along normal-sized waveguides, and consist in trains of "X-shaped" beams. Those solutions possessed therefore infinite energy. In this note we show how to obtain, by contrast, finite-energy solutions, with the same localization and Superluminality properties. [PACS nos.: 41.20.Jb; 03.50.De; 03.30.+p; 84.40.Az; 42.82.Et. Keywords: Wave-guides; Localized solutions to Maxwell equations; Superluminal waves; Bessel beams; Limited-dispersion beams; Finite-energy waves; Electromagnetic wavelets; X-shaped waves; Evanescent waves; Electromagnetism; Microwaves; Optics; Special relativity; Localized acoustic waves; Seismic waves; Mechanical waves; Elastic waves; Guided gravitational waves.]Comment: plain LaTeX file (12 pages), plus 10 figure

    A Fully Differential Digital CMOS Pulse UWB Generator

    Get PDF
    A new fully-digital CMOS pulse generator for impulse-radio Ultra-Wide-Band (UWB) systems is presented. First, the shape of the pulse which best fits the FCC regulation in the 3.1-5 GHz sub-band of the entire 3.1-10.6 GHz UWB bandwidth is derived and approximated using rectangular digital pulses. In particular, the number and width of pulses that approximate an ideal template is found through an ad-hoc optimization methodology. Then a fully differential digital CMOS circuit that synthesizes the pulse sequence is conceived and its functionality demonstrated through post-layout simulations. The results show a very good agreement with the FCC requirements and a low power consumptio

    A mechanistic mathematical model for describing and predicting the dynamics of high-affinity nitrate intake into roots of maize and other plant species

    Get PDF
    A fully mechanistic dynamical model for plant nitrate uptake is presented. Based on physiological and regulatory pathways and based on physical laws, we form a dynamic system mathematically described by seven differential equations. The model evidences the presence of a short-term positive feedback on the high-affinity nitrate uptake, triggered by the presence of nitrate around the roots, which induces its intaking. In the long run, this positive feedback is overridden by two long-term negative feedback loops which drastically reduces the nitrate uptake capacity. These two negative feedbacks are due to the generation of ammonium and amino acids, respectively, and inhibit the synthesis and the activity of high-affinity nitrate transporters. This model faithfully predicts the typical spiking behavior of the nitrate uptake, in which an initial strong increase of nitrate absorption capacity is followed by a drop, which regulates the absorption down to the initial value. The model outcome was compared with experimental data and they fit quite nicely. The model predicts that after the initial exposure of the roots with nitrate, the absorption of the anion strongly increases and that, on the contrary, the intensity of the absorption is limited in presence of ammonium around the roots

    Early bisphosphonate treatment in infants with severe osteogenesis imperfecta.

    Get PDF
    Cyclical neridronate treatment, started just after diagnosis at birth, had positive effects on growth and fracture rat

    Ribosomal core-particles as the target of ricin

    Full text link
    • …
    corecore