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Abstract
Objective
To investigate if the association between MRI-detectable white matter hyperintensity (WMH)
and cognitive status reported in previous studies persists at older ages (>80 years), when some
white matter abnormality is almost universally reported in clinical practice.

Methods
Consecutive eligible patients from a population-based cohort of all TIA/nondisabling stroke
(Oxford Vascular Study) underwent multimodal MRI, including fluid-attenuated inversion
recovery and diffusion-weighted imaging, allowing automated measurement of WMH volume,
mean diffusivity (MD), and fractional anisotropy (FA) in normal-appearing white matter using
FSL tools. These measures were related to cognitive status (Montreal Cognitive Assessment) at
age ≤80 vs >80 years.

Results
Of 566 patients (mean [range] age 66.7 [20–102] years), 107 were aged >80 years. WMH
volumes and MD/FA were strongly associated with cognitive status in patients aged ≤80 years
(all p < 0.001 for WMH, MD, and FA) but not in patients aged >80 years (not significant for
WMH, MD, and FA), with age interactions for WMH volume (pinteraction = 0.016) and MD
(pinteraction = 0.037). Voxel-wise analyses also showed that lower Montreal Cognitive Assess-
ment scores were associated with frontal WMH in patients ≤80 years, but not >80 years.

Conclusion
MRI markers of white matter damage are strongly related to cognition in patients with TIA/
minor stroke at younger ages, but not at age >80 years. Clinicians and patients should not
overinterpret the significance of these abnormalities at older ages.
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White matter hyperintensity (WMH) of presumed vascular
origin detectable on MRI is associated with cognitive impair-
ment and dementia.1,2 Associations between cognitive scores
and measures of WMH load have been shown in elderly
individuals without dementia,3–6 patients with manifested ar-
terial disease,7 and patients with TIA or minor stroke.8 Meas-
ures of white matter microstructural integrity estimated using
diffusion tensor imaging (DTI), such as fractional anisotropy
(FA) and mean diffusivity (MD), are also associated with
cognitive deficits in elderly individuals without dementia9 in-
cluding those with small vessel disease.10,11 Importantly, it has
been shown that these DTI measures are abnormal not only in
WMH regions, but also in the surrounding normal-appearing
white matter (NAWM), and that the level of DTI-detected
deterioration of NAWM is associated with age and WMH
burden in cognitively healthy adults,12,13 including those older
than 90,14 as well as poststroke patients.15,16 These findings
suggest that DTI modifications precede the occurrence of
WMH and better capture the true extent of pathophysiologic
changes underlying global white matter.17,18

The prevalence ofWMH increaseswith age, particularly after age
80,19,20 and DTI estimates of white matter integrity also sharply
deteriorate with age.21 However, there are few data on the age-
specific association between MRI-detectable white matter
damage and cognition, with most studies reporting associations
pooled across a broad range of ages (e.g., ≥50,7 >60,3 or >6522).
Yet, some studies suggest that the association may attenuate at
age >80,23,24 although, to our knowledge, no studies have directly
compared the association in older vs younger adults.

Establishing the relevance of WMH to cognition in very old
patients is increasingly important because individuals over 80
years of age represent the most rapidly growing segment of the
population,25 with the greatest concern about risk of
dementia.26–28 Furthermore, MRI is now very frequently per-
formed as first-line brain imaging for a wide range of neurologic
symptoms, such that someWMHare almost always reported in
older patients.19,29 The most common indication for such
imaging in routine practice is after TIA and stroke, and patients
frequently have evidence of small vessel disease, inevitably
raising concern about vascular cognitive impairment.30–32 We
therefore studied MRI markers of white matter damage and
cognitive status in a population-based cohort of patients with
TIA or minor stroke, comparing those aged ≤80 vs >80 years.

We also explored with voxel-wise analyses whatWMH location
is more strongly associated with cognitive impairment and
whether there would be differences between age groups.

Methods
Study population
Consecutive patients were recruited betweenMarch 2012 and
June 2016 from the Oxford Vascular Study (OXVASC),
a prospective cohort study of all acute vascular events in
a defined population of 92,000 residents registered with 100
primary care physicians in Oxfordshire, and the only
population-based study of all vascular disease that does not
exclude very old patients. After a suspected nondisabling ce-
rebrovascular event (NIH Stroke Scale score <4), OXVASC
participants undergo brain MRI, detailed clinical character-
ization, and cognitive assessment, with face-to-face follow-up
at 1, 3, 6, 12, 24, and 60 months. In order to avoid any
selection bias, particularly against older patients, patients with
a previous TIA or minor stroke prior to the imaging study
period were included. Exclusion criteria specific for the
purposes of the present imaging study were (1) MRI con-
traindication or known claustrophobia; (2) intracranial space-
occupying lesion; (3) intracranial hemorrhage; (4) brain
defect due to previous neurosurgery or developmental
anomalies; (4) large chronic, subacute, or acute infarcts
(i.e., >2.5 cm on T1-weighted, T2-weighted, or diffusion-
weighted imaging sequences); (5) significant movement
artefacts that would impair registration; (6) inability to per-
form cognitive testing (i.e., due to language barriers).

Standard protocol approvals, registrations,
and patient consents
Written informed consent was obtained from all participants.
OXVASC was approved by the local ethics committee (Re-
search Ethics Committee reference number: 05/Q1604/70).

Data availability
Requests for data from the OXVASC Study will be considered
by P.M.R. in line with data protection laws. The general policy
is that as long as the proposed use of the data is scientifically
valid and as long as ethics approval permits, suitably anony-
mized data can be shared with other researchers.

Glossary
ANOVA = analysis of variance; BET = brain extraction tool; BIANCA = brain intensity abnormality classification algorithm;
CI = confidence interval; DTI = diffusion tensor imaging; FA = fractional anisotropy; FLAIR = fluid-attenuated inversion
recovery; FNIRT = FMRIB’s nonlinear image registration tool; FOV = field of view; GRAPPA = generalized autocalibrating
partial parallel acquisition; MD = mean diffusivity; MildCI = mild cognitive impairment; MNI = Montreal Neurological
Institute; MoCA = Montreal Cognitive Assessment; NAWM = normal-appearing white matter; NoCI = no cognitive
impairment; OR = odds ratio; OXVASC = Oxford Vascular Study; SevereCI = severe cognitive impairment; TE = echo time;
TI = inversion time; TR = repetition time; WMH = white matter hyperintensity.
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Cognitive status
Participants were divided into 3 groups according to their
Montreal Cognitive Assessment (MoCA) scores, which has
been shown to be sensitive to detect vascular cognitive
impairment33–35: no cognitive impairment (NoCI, MoCA
≥26), mild cognitive impairment (MildCI, 20 < MoCA < 26),
or severe cognitive impairment (SevereCI, MoCA ≤20).
These cutoffs were chosen on the basis of previous work
showing that the MoCA has high sensitivity in identifying
poststroke patients with mild but also severe/multidomain
cognitive impairment.34,36 For the purpose of the present
study, we used MoCA scores from the 1-month follow-up as
these better reflect the cognitive status independent from
transient cognitive variations related to the minor cerebro-
vascular event.37

Imaging acquisition
All images were acquired on a 3T Verio (Orem, UT) MRI
scanner. The imaging protocol used until December 2014
included fluid-attenuated inversion recovery (FLAIR) (repe-
tition time [TR]/echo time [TE]/inversion time [TI] 9,000/
94.0/2,500 ms, flip angle 150°, field of view [FOV] 200 mm,
voxel size 0.8 × 0.8 × 5 mm with 1.5 mm interslice gap), post-
gadolinium T1-weighted imaging (TR/TE/TI 1,250/4.63/
900 ms, flip angle 16°, FOV 220 mm, voxel size 1.1 × 1.1 ×
3 mm with 1.5 mm interslice gap), and diffusion-weighted
imaging (TR/TE 4,000/106 ms, generalized autocalibrating
partial parallel acquisition [GRAPPA] factor 2, FOV 230 mm,
voxel size 1.8 × 1.8 × 4 mm with 1.2 mm interslice gap, 12
directions, b value 1,000 s/mm2).

The protocol used from January 2015 included high-
resolution T1 (TR/TE/TI 2,000/1.94/880 ms, flip angle 8°,
FOV 256 mm, voxel size 1 × 1 × 1 mm), FLAIR (TR/TE/TI
9,000/88/2,500 ms, flip angle 150°, FOV 192mm, voxel size 1
× 1 × 3 mm), and diffusion-weighted imaging (TR/TE =
8,000/86 ms, GRAPPA factor 2, flip angle 16°, FOV 192 mm,
voxel size 2 × 2 × 2 mm, 32 directions, b value 1,500 s/mm2).

Measures of white matter damage (WMH volumes, MD and
FA in NAWM) obtained from the second protocol were
standardized on values obtained from the first protocol to
allow statistical analyses across the whole sample. In addition,
protocol type was added as covariate of no interest on uni-
variate and voxel-wise analyses.

Presence/absence of lacunar infarcts was rated by stroke
neurologists and neuroradiologists who were blind to the
cognitive scores. Lacunar infarcts were defined as hypointense
lesions on T1 imaging with corresponding hyperintense le-
sion on FLAIR images with a diameter <15 mm.

WMH measurement
WMHs were automatically segmented on FLAIR images with
brain intensity abnormality classification algorithm
(BIANCA), a fully automated, supervised method for WMH
detection, which gives the probability per voxel of being

WMH.38 The total WMH volume was calculated from the
voxels exceeding a probability of 0.9 (which gave the highest
accuracy on this dataset, as tested in our previous work38) of
being WMH and located within a white matter mask.
Obtained values were adjusted for the total brain and ven-
tricles volume (i.e., the sum of the volumes of gray matter,
white matter, and ventricles) calculated from the brain-
extracted images using FSL’s brain extraction tool (BET)39

and log transformed,40 as a proxy for intracranial volume that
could be obtained from the available FLAIR images.

For voxel-wise analyses, the thresholded and masked WMH
maps were binarized and transformed into Montreal Neuro-
logical Institute (MNI) standard space, applying the nonlinear
registration (FMRIB’s nonlinear image registration tool
[FNIRT])41 calculated from FLAIR to MNI (via high-
resolution T1, if available). We further thresholded the
transformed maps at 0.5, binarized them, and applied spatial
smoothing of full width at half maximum = 6 mm to com-
pensate for registration errors (the size of the smoothing
kernel was empirically decided to be the same as the maxi-
mum voxel dimension). The resulting maps were entered into
voxel-wise WMH statistical analyses.

WMH were also visually rated on the Fazekas WMH scale
allowing categorical measurement of periventricular and deep
WMH in grades from 0 (absent) to 3 (severe).42

Measurements of microstructural white
matter integrity in NAWM
Diffusion-weighted images were first corrected for head mo-
tion and eddy currents. DTI was then performed to create
MD and FA maps by fitting a tensor model to the diffusion-
weighted images using FMRIB’s Diffusion Toolbox.43 Images
were brain-extracted using FSL’s BET. All participants’ FA
maps were then nonlinearly registered to a common diffusion
space (FMRIB58_FA, an FA template in MNI space) using
FNIRT and the same transformation was applied to MD data.
For each participant, we calculated the linear transformation
from FLAIR to diffusion data (b = 0 image used as reference)
and combined it with the nonlinear transformation from
diffusion data to the common space calculated before. The
resulting transformation was then applied to WMH maps to
register them from FLAIR to diffusion common space. MD
and FA values from the NAWM were calculated as average
from voxels outside the WMH map, within a mask including
all the main white matter tracts in the JHU-ICBM DTI atlas
(figure 1). The evaluation of DTI-derived measures was re-
stricted to the main white matter tracts and not performed in
the whole NAWM in order to focus on the tracts that are
more consistent across participants. This also allows com-
pensating for possible registration errors occurring in the rest
of the white matter. In addition, to exclude the possibility of
a bias in the results due to a systematic difference in regis-
tration quality across age groups, we calculated a cost metric
(root mean square difference) between each participant’s FA
image registered to the template and the template itself and
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verified that it was not significantly different between age
groups (estimated root mean square difference = 0.0420 ±
0.0039; <80 years only = 0.0418 ± 0.0039; >80 years only =
0.0426 ± 0.0041).

Statistical analyses
Patients were grouped by age ≤80 vs >80 years and cognitive
status (NoCI, MildCI, SevereCI, respectively) as defined
above. Comparisons between age groups were performed
with Mann-Whitney or independent t test, as appropriate, for
continuous variables, and χ2 tests for dichotomous variables
using SPSS version 22.0 (SPSS Inc., Chicago, IL). Age-related
differences in the associations between MRI markers of white
matter damage and cognitive status were studied with 2 × 3
factorial analyses of variance (ANOVAs). Results were con-
sidered significant at p < 0.05.

Sensitivity analyses were conducted to control for the effects
of potential confounders. These analyses included MRI pro-
tocol, sex, years of education, head size, presence of lacunes,
and number of vascular risks factors (i.e., the sum of hyper-
tension, diabetes mellitus, atrial fibrillation, hyperlipidemia,
and smoking). Furthermore, to account for differences in
sample size between age groups, the ANOVA was repeated
using 4 random subsamples of young participants stratified on
cognitive status to match the original large sample.

Voxel-wise analysis of WMH
We performed the same 2 × 3 factorial ANOVA at the voxel
level on the maps of WMH obtained with BIANCA to study
the location in the brain of age-by-cognitive status interactions.
We then performed correlational voxel-wise analysis on the

samemaps to test the association between higher probability of
havingWMH and lowerMoCA score in patients aged ≤80 and
in patients aged >80, separately for the 2 groups.

All the statistical analyses were performed with nonparametric
permutation tests using the randomise tool in FSL,44 with
protocol as nuisance covariate, and restricted to a white
matter mask. Results were considered significant at p < 0.05
fully corrected for multiple comparisons using family-wise
error correction at the voxel level.44

Results
Among 570 consecutive eligible patients, 4 were excluded due
to subsequently diagnosed WMHmimics (multiple sclerosis)
and known other causes of dementia (cerebral autosomal
dominant arteriopathy with subcortical infarcts and leu-
koencephalopathy and Alzheimer disease). Table 1 reports
the characteristics of the 566 patients included in the WMH
analyses, also divided by age groups (i.e., ≤80 and >80).
Diffusion-weighted MRI, allowing measurement of FA and
MD, were acquired from a subsample of 498 consecutive
participants (88%), as this sequence was not initially included
in the protocol. Sensitivity analyses on WMH volumes
(available on 566 participants) were repeated in the sub-
sample of 498 participants and gave similar results.

Age-related associations between WMH
volume and cognitive status
A 2 × 3 factorial ANOVA on WMH volumes showed a main
effect of age (F = 34.95, p < 0.001), a main effect of cognition

Figure 1 Diffusion tensor imaging (DTI) measurements in normal-appearing white matter (NAWM)

Examples of (A) fractional anisotropy (FA) and (B)
mean diffusivity (MD) maps registered in Mon-
treal Neurological Institute space from a single
participant. Average FA and MD value within
(NAWM) was calculated from the regions shown
in yellow, that is, within a mask including all the
main white matter tracts from the JHU-ICBM DTI
atlas and excluding regions of white matter
hyperintensity (WMH) obtained with brain in-
tensity abnormality classification algorithm (red).
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(F = 6.61, p = 0.001), and a significant interaction between age
and cognition (F = 4.16, pinteraction = 0.016). The interaction
suggested that associations between WMH and cognitive
status are different between the age groups (age ≤80 vs > 80
years, figure 2). Follow-up one-way ANOVAs confirmed that
there were WMH volume differences across cognitive groups
only in patients aged ≤80 and not in patients aged >80
(table 2), even when correcting for within-group age (F =
6.17, p = 0.002 for age ≤80; F = 1.06, p = 0.351 for age >80).
Sensitivity analyses showed that the interaction remained
significant (pinteraction = 0.046) when adjusting for MRI pro-
tocol, sex, years of education, head size, presence of lacunes,
and number of vascular risk factors. It also remained signifi-
cant when repeated using groups of equal sample sizes
obtained by randomly splitting the group of young partic-
ipants in 4 subsets matched on cognition to the original one
(table 3).

The association between highWMH load (above vs below the
80th percentile) and dementia (SevereCI vs NoCI) was
strong at age ≤80 (odds ratio [OR] 4.0, 95% confidence in-
terval [CI] 1.65–9.71, p = 0.001) but absent at age >80 (OR
0.89, 95% CI 0.26–3.03, p = 0.86). These associations were

unchanged when the analysis was repeated with the 80th
percentile cutoff determined separately in the 2 age groups
(age ≤80: OR 3.9, 95% CI 1.68–9.17, p = 0.001; age >80: OR
1.6, 95% CI 0.41–6.47, p = 0.488).

A 2 × 3 factorial ANOVA with years of education as de-
pendent variable showed no significant interaction between
age and cognitive groups (p = 0.693), nor did another
ANOVA with brain and ventricles volume as dependent
variable (p = 0.159).

Age-relatedassociations betweenMDandFA in
NAWM and cognitive status
A 2 × 3 factorial ANOVA on average MD values extracted
from NAWM showed a main effect of age (F = 73.58, p <
0.001), a main effect of cognitive status (F = 14.84, p < 0.001),
and a significant interaction between age and cognitive status
(F = 3.32, pinteraction = 0.037). Sensitivity analyses showed that
the interaction on MD from NAWM remained significant
when adjusting for MRI protocol, sex, years of education,
head size, presence of lacunes, and number of vascular risks
factors (pinteraction = 0.048). A similar 2 × 3 factorial ANOVA
on average FA values extracted from NAWM showed a main

Table 1 Clinical and imaging features of total sample and age groups

Study Total Age ≤80 y Age >80 y p Value

N 566 459 107

Age, y, mean ± SD 66.7 ± 14.3 62.5 ± 12.5 84.7 ± 3.7

Age range, y 20–102 20–80 81–102

Age, y, median (IQR) 69 (20.5) 65 (17.9) 83.8 (4.9)

Female sex, n (%) 280 (49.5) 228 (49.7) 52 (48.6) 0.841

TIA, other minor stroke, n (%) 408 (72.1) 336 (73.4) 72 (67.9) 0.259

Years of education, mean ± SD 13.0 ± 3.5 13.3 ± 3.4 12.0 ± 3.7 0.002

Hypertension, n (%) 260 (45.9) 190 (41.5) 70 (65.4) <0.001

Diabetes, n (%) 55 (9.7) 41 (9.0) 14 (13.1) 0.168

Atrial fibrillation, n (%) 60 (10.6) 40 (8.7) 20 (18.7) 0.002

Hyperlipidemia, n (%) 163 (28.8) 130 (28.4) 33 (30.8) 0.538

Smoking, n (%) 159 (28.1) 138 (30.1) 21 (19.6) 0.040

Total Fazekas ≥3, n (%) 174 (30.7) 117 (25.5) 57 (53.2) <0.001

Presence of lacunar infarcts, n (%) 77 (13.6) 48 (10.5) 29 (27.4) <0.001

Brain volume,a cm3, mean ± SD 1,047.0 ± 134.0 1,073.8 ± 129.8 966.9 ± 115.2 <0.001

WMH volume, cm3, mean ± SD 11.7 ± 10.9 10.0 ± 8.9 19.1 ± 14.7 <0.001

Average FA (NAWM), mean ± SD 0.49 ± 0.03 0.50 ± 0.03 0.46 ± 0.03 <0.001

Average MD (NAWM) (×1023), mean ± SD 0.90 ± 0.09 0.88 ± 0.07 0.99 ± 0.08 <0.001

Abbreviations: FA = fractional anisotropy; IQR = interquartile range; MD = mean diffusivity; NAWM = normal-appearing white matter; WMH = white matter
hyperintensities.
Total Fazekas calculated as sum of deep and periventricular scores.
a Defined as the sum of gray and white matter volumes (i.e., not including the ventricles).
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effect of age (F = 41.74, p < 0.001), and a main effect of
cognitive status (F = 13.67, p < 0.001), but no interaction (F =
1.52, pinteraction = 0.219).

One-way ANOVAs on average MD and FA values extracted
from NAWM confirmed that there were differences across
cognitive groups only in patients aged ≤80, but not in
patients aged >80 (table 2). Adding age or WMH volume as
covariates (analyses of covariance) did not change the
results (table 4).

Localization of WMH relevant to
cognitive status
The voxel-wise 2 × 3 factorial ANOVA showed an interaction
between cognitive status and age group in an area of the left
deep frontal white matter (figure 3, blue–light blue). The
voxel-wise correlational analysis performed in patients aged
≤80 showed that in this group the association between the
probability of having WMH and lower MoCA score was lo-
calized in periventricular frontal and parietal white matter
areas bilaterally, more extended on the left hemisphere

Table 2 Clinical and imaging features of cognitive groups by age

No CI Mild CI Severe CI p Value

Age ≤80 y

NWMH (NDTI) 338 (295) 97 (83) 24 (20)

Age, y, mean ± SD 61.8 ± 2.5 62.0 ± 12.6 70.2 ± 8.7 0.005

Female, n (%) 165 (48.8) 45 (46.4) 18 (75.0) 0.036

Event type, TIA, other minor stroke, n (%) 254 (75.4) 71 (73.2) 11 (45.8) 0.007

Hypertension, n (%) 131 (38.9) 44 (45.4) 15 (62.5) 0.161

Diabetes, n (%) 26 (7.7) 7 (7.2) 8 (33.3) 0.001

Atrial fibrillation, n (%) 26 (7.7) 12 (12.4) 2 (8.3) 0.561

Hyperlipidemia, n (%) 93 (27.6) 28 (28.9) 9 (37.5) 0.871

Smoking, n (%) 107 (31.8) 24 (24.7) 7 (29.2) 0.547

Presence of lacunar infarcts, n (%) 33 (9.8) 12 (12.6) 3 (12.5) 0.691

WMH volume, cm3, mean ± SD 9.4 ± 7.9 10.1 ± 7.8 18.1 ± 18.4 <0.001a

Average FA (NAWM), mean ± SD 0.50 ± 0.03 0.49 ± 0.03 0.47 ± 0.03 <0.001a

Average MD (NAWM) (×1023), mean ± SD 0.86 ± 0.06 0.96 ± 0.07 0.96 ± 0.07 <0.001a

Age >80 y

NWMH (NDTI) 44 (42) 46 (42) 17 (16)

Age, y, mean ± SD 83.9 ± 3.3 85.9 ± 4.2 83.4 ± 2.5 0.009

Female sex, n (%) 22 (50.0) 22 (47.8) 8 (47.1) 0.970

Event type, TIA, other minor stroke, n (%) 31 (72.1) 30 (65.2) 11 (64.7) 0.749

Hypertension, n (%) 26 (59.1) 32 (69.6) 12 (70.6) 0.730

Diabetes, n (%) 3 (6.8) 8 (17.4) 3 (17.6) 0.575

Atrial fibrillation, n (%) 6 (13.6) 12 (26.1) 2 (11.8) 0.512

Hyperlipidemia, n (%) 13 (29.5) 17 (37.0) 3 (17.6) 0.637

Smoking, n (%) 9 (20.5) 9 (19.6) 3 (17.6) 0.901

Presence of lacunar infarcts, n (%) 12 (27.9) 15 (32.6) 2 (11.8) 0.256

WMH volume, cm3, mean ± SD 15.9 ± 10.7 21.3 ± 14.6 21.4 ± 21.9 0.166a

Average FA (NAWM), mean ± SD 0.47 ± 0.03 0.45 ± 0.03 0.45 ± 0.04 0.110a

Average MD (NAWM) (×1023), mean ± SD 0.96 ± 0.07 1.01 ± 0.09 1.01 ± 0.10 0.067a

Abbreviations: CI = cognitive impairment; FA = fractional anisotropy; MD = mean diffusivity; NAWM = normal-appearing white matter; WMH = white matter
hyperintensities.
a Comparisons between cognitive groups that were significant for patients ≤80, but not for patients >80.
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(figure 3, red–yellow) (see resulting maps on neurovault.org/
collections/2763/). The voxel-wise correlational analysis in
patients aged >80 instead showed no voxel-wise associations
between WMH and MoCA score.

Voxel-wise results did not significantly change when con-
trolling for age within each group.

Discussion
We found high WMH load in patients with previous TIA or
minor stroke aged >80, but showed that, in this age group, it
was not significantly associated with cognitive impairment.
High WMH load was strongly associated with cognition only
in patients aged ≤80, who were 4 times more likely to have
severe impairment than patients aged ≤80 with low WMH
load. The lack of significant association between WMH and
cognition in patients aged >80 also persisted on voxel-wise
analyses of WMH distribution, which are expected to be more
sensitive than the simple measure of total WMH volume.
Finally, we explored if DTI measures of microstructural in-
tegrity in NAWM (i.e., outside WMH) would correlate better
with cognitive status, but again found no significant associa-
tions at age >80.

This loss of association betweenWMH and cognition at older
ages might seem at odds with many previous studies showing
significant associations between white matter damage and
cognition in the general population or in groups of patients
aged >50, 60, or 65.1–3,7 However, 2 studies found no asso-
ciations between WMH and cognition in community-
dwelling elderly and stroke survivors older than 80.23,24 Our
findings, taken together with these 2 previous studies, have
important implications for interpretation of brain imaging at
older ages. First, MRI has become the recommended first-line
imaging investigation for several neurologic conditions af-
fecting older people, and some WMH are almost universally
reported in elderly patients. Our results suggest that high
WMH loads in patients aged >80 may be considered not
excessively concerning by clinicians, patients, or their families.
However, the presence of WMH at younger ages should

prompt further investigation of possible cognitive impair-
ment. Second, MRI markers of white matter damage have
been recommended for use as a proxy of vascular cognitive
impairment,11,45,46 but interpretation may be more complex
in patients aged >80.

Since WMH represents late-stage macroscopic damage of the
white matter that occurs as a result of small vessel disease, we
also studied microstructural markers of white matter integrity
associated with interstitial fluid mobility and water content
(namely MD and FA) outside the WMH regions in macro-
scopically normal-appearing white matter. These measures
have been argued to be better markers of cognitive decline in
patients with symptomatic cerebrovascular disease and to be
more sensitive to change.11 Yet we did not find a strong as-
sociation between these measures and cognitive status in
patients >80, suggesting that our findings are not due to in-
trinsic limitations of the particular MRI marker adopted.
Neuropathologic studies also showed that the association
between dementia and postmortem evidence of vascular pa-
thology attenuates in the very old.47

The lack of association between white matter abnormality and
cognitive impairment in patients >80 was mainly driven by
patients with substantial white matter disease and normal
cognition. Patients aged ≤80 with similar degree of damage
instead showed severe cognitive impairment. This finding
goes against the hypothesis that a certain threshold of WMH
is needed to affect cognition.23 It also suggests that the lack of
correlation between WMH and cognition in patients aged
>80 could not simply be due to the fact that patients with
severe white matter damage might have already died by the
age of 80, as if this were the case the group aged >80 would be
expected to have little white matter abnormality. However,
WMH may have diverse underlying pathologies, some not
affecting cognition or life expectancy, others increasing sus-
ceptibility to dementia and death (i.e., only patients whose
white matter pathology caused dementia had died by the age
of 80). In addition, since we studied all consecutive patients
presenting to a TIA/stroke clinic, we cannot exclude the
possibility of a sampling bias due to the fact that elderly
patients with severe cognitive impairment or dementia may

Table 3 Results of factorial analyses of variance (ANOVAs) repeated on 4 random subsamples of participants aged ≤80
stratified according to cognition (i.e., same as the original group of 459)

Stratified random samples aged ≤80

N 2 × 3 factorial ANOVA

No CI Mild CI Severe CI Total Mean square F p Value

Random sample 1 84 24 6 114 0.370 3.098 0.047

Random sample 2 84 24 6 114 0.371 3.271 0.040

Random sample 3 85 24 6 115 0.661 6.307 0.002

Random sample 4 85 25 6 116 0.438 3.559 0.030

Abbreviation: CI = cognitive impairment.
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not present to medical attention for a suspected TIA. How-
ever, previous studies on community-dwelling elderly not
subject to presentation bias similarly found no association
between white matter abnormalities and cognition.14,23 Yet
the clinical implications of our study (i.e., the lack of associ-
ation between WMH and cognitive impairment in patients
aged >80) remain, irrespective of the mechanism, as—
ultimately—the group of patients relevant to clinicians only
includes those who present to medical attention. Of note, the
lack of correlation between WMH and cognition in patients
aged >80 parallels the tendency for the associations between
other risk factors and dementia to attenuate with advancing
ages.48

One of the strengths of our study is that it addresses a major
limiting factor in non-population-based studies by not ex-
cluding very old patients. In addition, we imaged a relatively
homogeneous population in that all patients had recent
symptomatic cerebrovascular disease, such that confounding
by greater comorbidities or vascular risk factors in the older
age group is less likely, as also shown by sensitivity analyses
including potential confounders such as brain size, education,
number of vascular risks factors, and presence of lacunar
infarcts as covariates.

Several limitations should be highlighted. First, we looked
only at the cross-sectional associations with cognitive status

Figure 2 Age-related associations between white matter hyperintensity (WMH) volume and cognitive status

(A) Violin plots of the adjusted, log-transformed WMH volumes
for the 6 groups of interest obtained by dividing patients
according to cognitive status and age. Error bars are ± 1 SD.
(B) Average maps of WMH distribution for each group. First
row, patients aged >80; second row, patients ≤80. Left: No
cognitive impairment (CI). Middle: Mild CI. Right: Severe CI
(neurovault.org/collections/2763/).
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and cannot be certain that associations would be similar on
long-term follow-up. Second, we used only the MoCA as
a screening tool for cognitive impairment, and so we cannot
exclude subtler cognitive deficits in older patients with severe
white matter disease, which might have been evident on more
detailed neuropsychological assessment. However, we were
primarily interested in clinically overt cognitive impairment.
Third, we did not adjust for the presence of subclinical

depression or other neuropsychiatric disorders, which may
affect cognitive performance. However, we would expect the
effect of stroke-related depression to be similar across the 2
age groups,49 as these did not differ in the severity of cere-
brovascular event. Finally, we cannot exclude that the lack of
correlation between WMH and cognition in patients aged
>80 was merely due to differences in sample size. However,
we believe this possibility to be extremely unlikely considering

Figure 3 Localization of white matter hyperintensity (WMH) relevant to cognitive status

In red–yellow, regions of significant correlation between higher probability of havingWMHand lowerMontreal Cognitive Assessment scores in patients aged
≤80 years. The same correlational analyses in patients aged >80 years did not lead to significant results. In blue–light blue, region of significant interaction
between age and cognitive status resulting from the 2 × 3 voxel-wise analysis of variance (neurovault.org/collections/2763/).

Table 4 Follow-up analyses of covariance performed adjusting for age and for other measures of white matter
abnormalities as covariates

Cognitive group effect

Age ≤80 y Age > 80

Mean
square F

p
Value

Partial
η2

Mean
square F

p
Value

Partial
η2

Dependent variable: WMH, no covariates (also reported
in table 2)

1.358 11.058 <0.001a 0.046 0.219 2.070 0.166a 0.038

Dependent variable: WMH, covariate: age 0.574 6.167 0.002a 0.026 0.106 1.056 0.351a 0.020

Dependent variable: WMH, covariate: FA in NAWM 0.312 3.987 0.019a 0.020 0.031 0.394 0.675a 0.008

Dependent variable: WMH, covariate: MD in NAWM 0.113 1.584 0.206 0.008 0.013 0.196 0.822 0.004

Dependent variable: MD, no covariates (also reported in
table 2)

9.578E-8 19.487 <0.001a 0.090 1.985E-8 2.782 0.067a 0.054

Dependent variable: MD, covariate: age 4.710E-8 14.562 <0.001a 0.069 1.426E-8 2.234 0.113a 0.044

Dependent variable: MD, covariate: WMH 2.031E-8 7.144 0.001a 0.035 7.015E-9 1.568 0.214a 0.032

Dependent variable: FA, no covariates (also reported in
table 2)

0.015 18.852 <0.001a 0.087 0.003 2.256 0.110a 0.044

Dependent variable: FA, covariate: age 0.008 14.282 <0.001a 0.068 0.002 1.933 0.150a 0.039

Dependent variable: FA, covariate: WMH 0.005 9.053 <0.001a 0.044 0.001 1.262 0.288a 0.026

Abbreviations: FA = fractional anisotropy; MD = mean diffusivity; NAWM = normal-appearing white matter; WMH = white matter hyperintensity.
a Analyses of covariance in which the effect of the cognitive groups were significant for patients ≤80, but not for patients >80.
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that we found a significant interaction and that our results
agree with other findings in the literature.14,23,50 Future
studies with larger sample sizes in patients older than 80 are
required to support the identified lack of clinical significance
of MRI markers.

Our findings confirm the association between MRI markers of
white matter damage and cognitive impairment in patients
younger than 80. They also suggest that the clinical significance
of MRI markers might not be overinterpreted in patients older
than 80, or considered a good proxy of vascular cognitive im-
pairment in trials or research studies on this age group.
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