91 research outputs found

    Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin

    Get PDF
    UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1–E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders

    Structural model of the hUbA1-UbcH10 quaternary complex: In silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin

    Get PDF
    UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders

    Evaluation of the anti-angiogenic properties of the new selective αVβ3 integrin antagonist RGDechiHCit

    Get PDF
    Integrins are heterodimeric receptors that play a critical role in cell-cell and cell-matrix adhesion processes. Among them, αVβ3 integrin, that recognizes the aminoacidic RGD triad, is reported to be involved in angiogenesis, tissue repair and tumor growth. We have recently synthesized a new and selective ligand of αVβ3 receptor, referred to as RGDechiHCit, that contains a cyclic RGD motif and two echistatin moieties.The aim of this study is to evaluate in vitro and in vivo the effects of RGDechiHCit. Therefore, we assessed its properties in cellular (endothelial cells [EC], and vascular smooth muscle cells [VSMC]) and animal models (Wistar Kyoto rats and c57Bl/6 mice) of angiogenesis.In EC, but not VSMC, RGDechiHCit inhibits intracellular mitogenic signaling and cell proliferation. Furthermore, RGDechiHCit blocks the ability of EC to form tubes on Matrigel. In vivo, wound healing is delayed in presence of RGDechiHCit. Similarly, Matrigel plugs demonstrate an antiangiogenic effect of RGDechiHCit.Our data indicate the importance of RGDechiHCit in the selective inhibition of endothelial αVβ3 integrin in vitro and in vivo. Such inhibition opens new fields of investigation on the mechanisms of angiogenesis, offering clinical implications for treatment of pathophysiological conditions such as cancer, proliferative retinopathy and inflammatory disease

    High-Resolution Conformational Analysis of RGDechi-Derived Peptides Based on a Combination of NMR Spectroscopy and MD Simulations

    Get PDF
    The crucial role of integrin in pathological processes such as tumor progression and metastasis formation has inspired intense efforts to design novel pharmaceutical agents modulating integrin functions in order to provide new tools for potential therapies. In the past decade, we have investigated the biological proprieties of the chimeric peptide RGDechi, containing a cyclic RGD motif linked to an echistatin C-terminal fragment, able to specifically recognize αvβ3 without cross reacting with αvβ5 and αIIbβ3 integrin. Additionally, we have demonstrated using two RGDechi-derived peptides, called RGDechi1-14 and ψRGDechi, that chemical modifications introduced in the C-terminal part of the peptide alter or abolish the binding to the αvβ3 integrin. Here, to shed light on the structural and dynamical determinants involved in the integrin recognition mechanism, we investigate the effects of the chemical modifications by exploring the conformational space sampled by RGDechi1-14 and ψRGDechi using an integrated natural-abundance NMR/MD approach. Our data demonstrate that the flexibility of the RGD-containing cycle is driven by the echistatin C-terminal region of the RGDechi peptide through a coupling mechanism between the N- and C-terminal regions

    An Overview of Peptide-Based Molecules as Potential Drug Candidates for Multiple Sclerosis

    No full text
    Multiple sclerosis (MS) belongs to demyelinating diseases, which are progressive and highly debilitating pathologies that imply a high burden both on individual patients and on society. Currently, several treatment strategies differ in the route of administration, adverse events, and possible risks. Side effects associated with multiple sclerosis medications range from mild symptoms, such as flu-like or irritation at the injection site, to serious ones, such as progressive multifocal leukoencephalopathy and other life-threatening events. Moreover, the agents so far available have proved incapable of fully preventing disease progression, mostly during the phases that consist of continuous, accumulating disability. Thus, new treatment strategies, able to halt or even reverse disease progression and specific for targeting solely the pathways that contribute to the disease pathogenesis, are highly desirable. Here, we provide an overview of the recent literature about peptide-based systems tested on experimental autoimmune encephalitis (EAE) models. Since peptides are considered a unique therapeutic niche and important elements in the pharmaceutical landscape, they could open up new therapeutic opportunities for the treatment of MS

    Solid-Phase Synthesis of New Trp(Nps)-Containing Dipeptide Derivatives as TRPV1 Channel Blockers

    Get PDF
    Trp(Nps)-Lys-NH2 derivatives, bearing alkyl or guanidine groups either at the N-terminus or on the Lys side-chain or at both positions were conveniently prepared on solid-phase and evaluated as TRPV1 channel antagonists
    corecore