1,661 research outputs found
On the prediction of turbulent secondary flows
The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points
Calcium-sensing receptor activation increases cell-cell adhesion and ß-cell function
Background/Aims: The extracellular calcium-sensing receptor (CaR) is expressed in pancreatic β-cells where it is thought to facilitate cell-to-cell communication and augment insulin secretion. However, it is unknown how CaR activation improves β-cell function. Methods: Immunocytochemistry and western blotting confirmed the expression of CaR in MIN6 β-cell line. The calcimimetic R568 (1µM) was used to increase the affinity of the CaR and specifically activate the receptor at a physiologically appropriate extracellular calcium concentration. Incorporation of 5-bromo-2’-deoxyuridine (BrdU) was used to measure cell proliferation, whilst changes in non-nutrient-evoked cytosolic calcium were assessed using fura-2-microfluorimetry. AFM-single-cell-force spectroscopy related CaR-evoked changes in epithelial (E)-cadherin expression to improved functional tethering between coupled cells. Results: Activation of the CaR over 48hr doubled the expression of E-cadherin (206±41%) and increased L-type voltage-dependent calcium channel expression by 70% compared to control. These changes produced a 30% increase in cell-cell tethering and elevated the basal-to-peak amplitude of ATP (50µM) and tolbutamide (100µM)-evoked changes in cytosolic calcium. Activation of the receptor also increased PD98059 (1-100µM) and SU1498 (1-100µM)-dependent β-cell proliferation. Conclusion: Our data suggest that activation of the CaR increases E-cadherin mediated functional tethering between β-cells and increases expression of L-type VDCC and secretagogue-evoked changes in [Ca2+]i. These findings could explain how local changes in calcium, co-released with insulin, activate the CaR on neighbouring cells to help ensure efficient and appropriate secretory function
A piecewise-linear reduced-order model of squeeze-film damping for deformable structures including large displacement effects
This paper presents a reduced-order model for the Reynolds equation for
deformable structure and large displacements. It is based on the model
established in [11] which is piece-wise linearized using two different methods.
The advantages and drawbacks of each method are pointed out. The pull-in time
of a microswitch is determined and compared to experimental and other
simulation data.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/handle/2042/16838
Sharing digital object across data infrastructures using Named Data Networking (NDN)
Data infrastructures manage the life cycle of digital assets and allow users to efficiently discover them. To improve the Findability, Accessibility, Interoperability and Re-usability (FAIRness) of digital assets, a data infrastructure needs to provide digital assets with not only rich meta information and semantics contexts information but also globally resolvable identifiers. The Persistent Identifiers (PIDs), like Digital Object Identifier (DOI) are often used by data publishers and infrastructures. The traditional IP network and client-server model can potentially cause congestion and delays when many consumers simultaneously access data. In contrast, Information-Centric Networking (ICN) technologies such as Named Data Networking (NDN) adopt a data-centric approach where digital data objects, once requested, may be stored on intermediate hops in the network. Consecutive requests for that unique digital object are then made available by these intermediate hops (caching). This approach distributes traffic load more efficient and reliable compared to host-to-host connection-oriented techniques and demonstrates attractive opportunities for sharing digital objects across distributed networks. However, such an approach also faces several challenges. It requires not only an effective translation between the different naming schemas among PIDs and NDN, in particular for supporting PIDs from different publishers or repositories. Moreover, the planning and configuration of an ICN environment for distributed infrastructures are lacking an automated solution. To bridge the gap, we propose an ICN planning service with specific consideration of interoperability across PID schemas in the Cloud environment
Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector
Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data
Large-Eddy simulation of pulsatile blood flow
Large-Eddy simulation (LES) is performed to study pulsatile blood flow through a 3D model of arterial stenosis. The model is chosen as a simple channel with a biological type stenosis formed on the top wall. A sinusoidal non-additive type pulsation is assumed at the inlet of the model to generate time dependent oscillating flow in the channel and the Reynolds number of 1200, based on the channel height and the bulk velocity, is chosen in the simulations. We investigate in detail the transition-to-turbulent phenomena of the non-additive pulsatile blood flow downstream of the stenosis. Results show that the high level of flow recirculation associated with complex patterns of transient blood flow have a significant contribution to the generation of the turbulent fluctuations found in the post-stenosis region. The importance of using LES in modelling pulsatile blood flow is also assessed in the paper through the prediction of its sub-grid scale contributions. In addition, some important results of the flow physics are achieved from the simulations, these are presented in the paper in terms of blood flow velocity, pressure distribution, vortices, shear stress, turbulent fluctuations and energy spectra, along with their importance to the relevant medical pathophysiology
Trapping cold atoms using surface-grown carbon nanotubes
We present a feasibility study for loading cold atomic clouds into magnetic
traps created by single-wall carbon nanotubes grown directly onto dielectric
surfaces. We show that atoms may be captured for experimentally sustainable
nanotube currents, generating trapped clouds whose densities and lifetimes are
sufficient to enable detection by simple imaging methods. This opens the way
for a novel type of conductor to be used in atomchips, enabling atom trapping
at sub-micron distances, with implications for both fundamental studies and for
technological applications
Conserved miRNAs are candidate post-transcriptional regulators of developmental arrest in free-living and parasitic nematodes
Animal development is complex yet surprisingly robust. Animals may develop alternative phenotypes conditional on environmental changes. Under unfavorableconditions C. elegans larvae enter the dauer stage, a developmentally arrested, long-lived, and stress-resistant state. Dauer larvae of free-living nematodes and infective larvae of parasitic nematodes share many traits including a conserved endocrine signaling module (DAF/DAF-12), which is essential for the formation of dauer and infective larvae. We speculated that conserved post-transcriptional regulatory mechanism might also be involved in executing the dauer and infective larvae fate. We used an unbiased sequencing strategy to characterize the miRNA gene complement in C. elegans, P.pacificus, and S. ratti. Our study raised the number of described miRNA genes to 257 for C. elegans, tripled the known gene set for P. pacificus to 362 miRNAs and is the first to describe miRNAs in a Strongyloides parasite. Moreover, we found a limited core set of 24 conserved miRNA families in all three species. Interestingly, our estimated expression fold changes between dauer vs. non-dauer stages and infective larvae vs. free-living stages reveal that despite the speed of miRNA gene set evolution in nematodes, homologous gene families with conserved 'dauer-infective' expression signatures are present. These findings suggest that common post-transcriptional regulatory mechanisms are at work and that the same miRNA families play important roles in developmental arrest as well as long-term survival in free-living and parasitic nematodes
Performance of upstream interaction region detectors for the FIRST experiment at GSI
The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at GSI has been designed to study carbon fragmentation, measuring 12C double differential cross sections (∂2σ/ ∂θ∂E) for different beam energies between 100 and 1000 MeV/u. The experimental setup integrates newly designed detectors in the, so called, Interaction Region around the graphite target. The Interaction Region upstream detectors are a 250 μm thick scintillator and a drift chamber optimized for a precise measurement of the ions interaction time and position on the target. In this article we review the design of the upstream detectors along with the preliminary results of the data taking performed on August 2011 with 400 MeV/u fully stripped carbon ion beam at GSI. Detectors performances will be reviewed and compared to those obtained during preliminary tests, performed with 500 MeV electrons (at the BTF facility in the INFN Frascati Laboratories) and 80 MeV/u protons and carbon ions (at the INFN LNS Laboratories in Catania)
- …