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ABSTRACT

The prediction of turbulent secondary flows with Reynolds stress models in circular
pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight
non-circular ducts are considered along with turbulent secondary flows in pipes and ducts
ihat arise from curvature or a system rotation. The physical mechanisms that generate these
different kinds of secondary flows are outlined and the level of turbulence closure required
to properly compute each type '« discussed in detail. Illustrative computations of a variety
of different secondary flows obtained from two-equation turbulence models and second-order

closures are provided to amplify these points.
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1. INTRODUCTION

The turbulence structure of internal flows within circular pipes or non-circular ducts can
be altered considerably by the occurrence of secondary flows [1-21]. These secondary flows
lead to friction losses and can shift the location of maximum momentum transport from the
pipe or duct centerline — two effects that can have profound consequences for engineering
design. Consequently, there is the need for turbulence models that can reliably predict
the secondary flows that occur in engineering applications which include turbomachinery
impellers and blade passages, aircraft intakes, and pipe or duct cooling systems, to name a
few.

In this paper, the prediction of four fundamental types of secondary flows are discussed:
(1) turbulence-driven secondary flows in straight ducts of non-circular cross-section, (2)
turbulent secondary flows in curved circular pipes, (3) turbulent secondary flows in curved
ducts of non-circular cross-section and (4) turbulent secondary flows in rotating ducts of non-
circular cross-section. These flows are selected since they involve secondary flows generated
by a combination of the effects of normal Reynolds stress differences, streamline curvature
and body forces arising from a system rotation. Thus, a relatively broad basis for the
evaluation of models can be provided. The ability of two-equation models and second-order
closures to predict these types of turbulent secondary flows will be evaluated in a systematic
manner. A variety of illustrative calculations of secondary flows will be presented along with

an assessment of the progress that has been made in the analysis of these flows.

2. ANALYSIS OF SECONDARY FLOWS

We will consider the mean turbulent flow of a viscous incompressible fluid. The Reynolds-

averaged Navier-Stokes and continuity equations take the form
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in a steadily rotating frame where ; is the mean velocity, 7 is the modified mean pressure,
(), is the angular velocity of the reference frame, 7;; = m is the Reynolds stress tensor,
and v is the kinematic viscosity of the fluid. In (1)-(2), the Einstein summation convention
applies to repeated indices and e;;; denotes the permutation tensor.

First, we will consider the case of a straight circular pipe or non-circular duct whose axis

lies along the z-direction and whose cross-section lies in the z,y-plane (see Figure 1). For



fully-developed turbulent flow, where @ = u(z,y)t+v(x,y)j + w(x,y)k, the secondary flow
(@,7) is derivable from a stream function :
N o
u = — T, v = . 3
! dy "7 oz (3)
The Reynolds-averaged Navier-Stokes equations can then be solved in the alternative axial

velocity /vorticity-stream function form given by

Jow _ow O1z. 07y,

U—+0—=G+vVio—- 2 - ¥ 90y

Yor TPy T Ot gr gy T 4)
o _oC = 01 — 1) 0P 0 Jw

T2 4525 — 72 vz — Tyy 2y T Ty | 5aoW 5
Yor oy TV T may T o e T2, (5)
Vi =( (6)
where 9p/0z = —(G is the constant applied pressure gradient driving the flow and ¢ =

J%/dx —0u/y is the axial component of the mean vorticity vector. Here, the angular velocity
§2 = corresponds to a general spanwise rotation since we can align the component of
the axis of rotation, that is normal to the axial direction, with the y-axis. Since the flow is
fully-developed, the component of the angular velocity along the z-axis does not enter into
Eqgs. (4)-(5).

From (3) and (6), it is clear that secondary flows are generated by the axial mean vorticity
¢ which becomes non-zero in a straight duct or pipe only if there are normal Reynolds stress
differences (1, — 72,.) or Coriolis forces (200w/dy) arising from a spanwise rotation. In the

subsections to follow we will briefly categorize secondary flows in pipes and ducts.

2.1. Straight Ducts (2 = o)

It is the axial vorticity source term
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that leads to the generation of turbulent secondary flows in straight non-circular ducts. A
necessary condition for the occurrence of secondary flows is that the axial mean velocity
w(z,y) must give rise to a non-zero normal Reynolds stress difference Tez — Tyy (otherwise,
Tzy, and hence @, will vanish; see Speziale [12,16]). For a circular pipe, even though 7,, —7,,
is non-zero, ®¢ = 0 due to the azimuthal symmetry of the axial mean velocity; consequently

no secondary flows occur [3]. For non-circular ducts, if 7., — 7, # 0, then invariably, &, will



be non-zero and secondary flows are generated. From this result it is clear that any eddy

viscosity model based on the Boussinesq hypothesis

2 0t; 01; 5
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(where K = %Ti,- is the turbulent kinetic energy and v is the eddy viscosity) will be incapable
of predicting secondary flows in a straight non-circular duct. According to (8), u = (0,0, @)
yields Ty, = Top = %K and, hence, the axial mean velocity gives rise to a vanishing normal
Reynolds stress difference 7,, — 7z which violates the necessary condition for secondary
flow. Hence, anisotropic eddy viscosity models — where nonlinear strain-dependent terms are
included — constitute the simplest level of Reynolds stress closure that can predict secondary
flows in straight non-circular ducts. Three examples of anisotropic eddy viscosity models are
the nonlinear K — & model of Speziale [22], the two-scale DIA model of Yoshizawa (23], and
the RNG based model of Rubinstein and Barton [24]. In the former model — for which sample
computations will be presented in the next section - the Reynolds stress is represented as

follows:
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is the frame-indifferent Oldroyd derivative of the mean rate of strain tensor ._q,-j = %(ﬁﬁi/azrj+
91;/0z;) and ¢ is the turbulent dissipation rate; €, = 0.09 and Cp = 1.68 are empirical
constants. In the limit as Cp — 0, the eddy viscosity relation of the standard K —¢ model is
recovered. It can be shown that in fully-developed duct flow, the axial mean velocity w gives
rise to the non-zero normal Reynolds stress difference 7 — 7oz = C*D(,Wj([\’:’/az)[(0@/8@2 -
(8@/dy)? in (9). Hence, secondary flows are generated by the nonlinear K — ¢ model.

For developing secondary flows, where history effects are important, a full Reynolds stress
closure is needed for a more complete description. Second-order closures are based on the

Reynolds stress transport equation [25]:
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where II;; is the combination of the pressure- strain correlation and the deviatoric part of
the dissipation rate tensor whereas DT is the turbulent transport term (here, 2 = 0 for a

stationary duct). From (11), it is straightforward to show — by substituting @ = (0,0,%)



into this equation - that secondary flows are generated by I1;; and ’D?; which are the only
terms that yield a normal Reynolds stress difference 7,, — 7., (see Speziale [12,16]). An order
of magnitude analysis, at high Reynolds numbers, tends to indicate that anisotropies in the
pressure-strain correlation are predominantly responsible for the generation of secondary
flows; anisotropies in the turbulent dissipation rate and turbulent transport term appear to

play a smaller role.

2.2. Rotating Pipes and Ducts

In a rotating circular pipe, the axial mean velocity W(r) gives rise to a vanishing ¢, by
symmetry arguments; hence, secondary flows are generated by the Coriolis term 2Q0w /oy
alone (the normal Reynolds stress differences in @, only have an indirect effect in determining
the structure of the resulting fully-developed secondary flow). Since the secondary flows in
rotating circular pipes are generated exclusively by Coriolis forces, eddy viscosity models such
as the A" — ¢ model are capable of describing this effect [9], albeit after some modifications.
For more detailed descriptions of the flow — or for the developing flow case - either anisotropic
eddy viscosity models or second-order closures should be used.

Secondary flows in rotating non-circular ducts are generated by two sources: normal
Reynolds stress differences embodied in the term @, and Coriolis forces represented by the
term 2Q0wW/dy. Hence, the simplest models that will yield acceptable predictions of this
flow are two-equation models with an anisotropic eddy viscosity. However, since the Coriolis
forces have a direct effect on the evolution of the Reynolds stresses (see Eq. (11)), second-
order closure models are needed for a more complete description of this flow. Even in the
absence of secondary flows, the Coriolis forces in (11) cause the axial mean velocity profiles

to become asymmetric - an effect that is difficult to describe with two-equation models.

2.3. Curved Pipes and Ducts

Secondary flows in curved pipes and ducts are generated by centrifugal forces. This can
be casily seen for the case of fully-developed curved duct flow with the streamwise mean
velocity w and secondary flow @, ¥ (corresponding to the directions 8, r, and =z, respectively).

Here, the mean flow equations can be written in the form:
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where ¢ = (V XW)g = 0u/dz — Jv/Jr is the streamwise mean vorticity, ¢ is the secondary
flow stream function, and —G is the applied mean pressure gradient. It is clear from (13)
that the streamwise vorticity source term (2w/r)0w/dz - which constitutes a centrifugal
acceleration term generated by the primary flow w - is the main generator of secondary flows
in curved pipes. In curved non-circular ducts, secondary flows are generated by centrifugal
effects as well as by the normal Reynolds stress differences 7.. — 7r and Tgg — 7, which play a
crucial role when the curvature is weak. Consequently, two-equation models with an isotropic
eddy viscosity, such as the K — ¢ model, have yielded reasonably acceptable predictions for
fully-developed secondary flows in curved pipes and curved ducts with moderate to strong
curvature ratios [17). In order to analyze curved duct flows for a range of curvature ratios,
or under developing conditions, anisotropic eddy viscosity models or second-order closure

models, respectively, are needed.

3. ILLUSTRATIVE EXAMPLES

We will first present computations of fully-developed turbulent flow in a straight rectan-
gular duct (see Figure 1). A secondary flow with eight counter-rotating vortices is generated
by normal Reynolds stress differences. Since the flow is fully-developed, a two-equation
model with an anisotropic eddy viscosity - solved in conjunction with wall functions — suf-
fices. In Figure 2, the mean secondary flow streamlines predicted by the nonlinear ' — ¢
model'(g) at high Reynolds numbers are shown for a square duct. This secondary flow is of
the order of 1-2% of the axial mean velocity. The characteristic eight-vortex secondary flow
illustrated in the schematic provided in Figure 1 is reproduced. These results stand in sharp
contrast to those obtained from the standard K —e model which erroneously predicts a uni-
directional mean turbulent flow — a deficiency that arises from the use of an eddy viscosity
model based on the Boussinesq hypothesis (8).

More quantitative comparisons will now be made for a straight 3 x I rectangular duct. The

secondary flow streamlines and contours of the normal Reynolds stress anisotropy 7zr — Tyy

<t



predicted by the nonlinear K —¢ model are compared with the experimental data of Hoagland
[1] in Figures 3(a)-3(b). These results are of a comparable level of quality as those obtained
from a second-order closure model similar to that of Launder, Reece and Rodi [25] as shown in
Figures 4(a)-4(b). Hence, it is clear that two-equation turbulence models with an anisotropic
eddy viscosity yield acceptable predictions for fully-developed secondary flows in a straight
rectangular duct. For developing turbulent flows in non-circular ducts. second-order closure
models yield more complete predictions [26].

The fully-developed secondary flow in a curved square duct predicted by the nonlin-
ear A" — ¢ model at high Reynolds numbers is shown in Figures 5(a)-5(b) for two different
curvature ratios (. (i.e., the ratio of the radius of curvature to the duct width). For mod-
erate curvature, there is a double-vortex secondary flow that undergoes a bifurcation to a
four-vortex secondary flow when the curvature ratio C, ~ 40. This is analogous to the
Gortler instability in curved channel flow [27]. For extremely weak curvature (C, > 10%),
the double-vortex secondary flow generated by centrifugal effects interacts with the eight-
vortex secondary flow generated by normal Reynolds stress differences yielding an extremely
complex secondary flow pattern which we will not show herein (see Hur et al. [20] and Hur
[28] for more details). An anisotropic eddy viscosity model is the simplest type of model
that can describe the full range of curvature ratios. For a more complete description of the
flow — especially under developing conditions — second-order closure models are preferable.
However, it is interesting to note that reasonably acceptable mean flow predictions have been
obtained for fully-developed curved pipe flow using the standard K — ¢ model for a limited
range of curvature ratios [5].

Now, we will discuss the prediction of curved turbulent pipe flows that are not fully-
developed, namely, the case of a circular pipe U-bend. Here, both history and near-wall
effects play a role; consequently, a second-order closure with a near-wall turbulence model
constitutes the preferred approach. We will show some illustrative computations for the
Launder, Reece and Rodi model with the near wall turbulence model of Lai and So [29].
In Figures 6(a)-6(b), the computed secondary flow and mean velocity profiles along the
pipe centerline (AA) and vertical radius (BB) are shown to compare favorably with the
experimental data of Anwer et al. [19] for a location 67.5° into the U-bend. At this same
location (6 = 67.5°), the secondary flow field predicted by the full second-order closure model
is compared with its counterpart obtained from the K — ¢ model in Figures 7(a)-7(b). It is
clear from these results that the second-order closure yields a more detailed picture of the
secondary flow structure. Unlike the K — & model, the second-order closure model is able to
predict the presence of a small subsidiary secondary flow cell near the outer bend of the pipe

(see the lower left-hand corner of Figure 7(a)). The existence of this secondary flow cell has



been extrapolated from experiments [21].

Finally, we will present some computed results for fully-developed turbulent flow in rect-
angular ducts subjected to a spanwise rotation (i.e., the duct configuration shown in Figure
| mounted in a frame that is rotating steadily about the y-axis with an angular velocity
). Ina low-aspect-ratio duct, for weak to moderate rotations, secondary flows occur that
are qualitatively very similar to those obtained in curved rectangular ducts (see Figures
5(a)-5(b)). For the sake of brevity, we will not show these double-vortex and four-vortex
secondary flow solutions (see Younis [30]). For a large-aspect-ratio rectangular duct — which
is used to experimentally simulate channel flow — a roll instability can occur at intermediate
rotation rates. This is illustrated in Figure 8 which shows the appearance of counter-rotating
Taylor vortices in the ‘nterior of the duct computed using a nonlinear algebraic Reynolds
stress model for a rotation number (i.e., angular velocity normalized by the channel thickness
and bulk mean velocity ) Ro = 0.1. These Taylor cells will cause the axial mean velocity
along the duct centerline (which is used to approximate channel flow) to become asymmetric.
Such an asymmetry also arises in the absence of secondary flows due to the direct effect of

‘oriolis forces on the Reynolds stresses as given in Eq. (11).

One-dimensional mean velocity calculations of rotating channel flow obtained using the
§SG second-order closure model [31] with wall functions are compared with experiments
[32] in Figures 9(a)-9(b). At weak rotation rates (see Figure 9(a)) the second-order closure
model does a reasonably good job of predicting the asymmetry in the mean velocity profile.
However, as the rotation number Ro becomes of the order of 107!, the quantitative accuracy
of the results degrade (see Figure 9(b) and also the results of Launder et al. [33]). This
could be partially due to the neglect of roll instabilities which have been documented exper-
imentally [8]. Full second-order closure model calculations of a rotating rectangular duct of
large-aspect ratio — as ilustrated in Figure 8 - should be conducted to resolve this issue. No
such detailed calculations of roll-instabilities in rotating turbulent channel flow have yet to

be undertaken with a second-order closure.

4. CONCLUDING REMARKS

A broad overview of turbulent secondary flows in pipes and ducts has been presented
which highlights the underlying physical mechanisms responsible for their generation and the
predictive capabilities of Reynolds stress models in describing these flows. Secondary flows
arising from normal Reynolds stress differences, curvature, and a system rotation have been
considered in an effort to establish a sufficiently general basis for the evaluation of models. In
the opinion of the authors, two-equation models with an anisotropic eddy viscosity represent

the simplest level of model that can predict a wide range of these flows without the ad hoc

7



adjustment of constants or the ad hoc prescription of turbulent length and time scales. These
two-equation models do a reasonably good job of predicting turbulent secondary flows in their
fully-developed state. For a more complete description of these flows — particularly under
developing conditions where history effects or body forces play a significant role — second-
order closures, with an asymptotically consistent near-wall turbulence model, are preferred.
While future research is still needed, the results presented in this paper demonstrate the
considerable progress that has been made during the past two decades in the prediction of

turbulent secondary flows.
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SECONDARY FLOW
u, v

secondary flow in a straight rectangular duct.

Figure 1. Schematic of turbulent
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Figure 2. Secondary flow streamlines in a square duct obtained from the nonlinear K — 13
model.
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(@) NONLINEAR K - ¢ MODEL

Figure 3. Comparison of the predictions of the nonlinear K — ¢ model with the experimental

data of Hoagland [1] for 3 x' 1 rectangular duct: (a) secondary flow streamlines and (b)

contours of the normal Reynolds stress difference Tp5 — Tyy-

13



(@  SECOND-ORDER CLOSURE

Figure 4. Comparison of the predictions of a second-order closure model with t}
mental data of Hoagland [1] for a 3 x 1 rectangular duct: (a)

(b) contours of the normal Reynolds stress difference Trr

1€ experi-
secondary flow streamlines and

— Tyy-
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(a)

(b)

A DI

— ¢ model

= 31.3.

Figure 5. Computed secondary flow streamlines obtained from the nonlinear K

for fully-developed turbulent flow in a curved square duct: (a) C; = 125 and (b) %
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Iligure 6. Comparison of the mean velocity predictions of the second-order closure model
of Lai and So [29] with experimental data [19] for a circular pipe U-bend (0 = 67.5°): (a)
profiles along the pipe centerline (AA) and (b) profiles along the vertical radius (BB).
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Figure 7. Computed secondary flow patterns for a circul

second-order closure of Lai and So [29] and (b) X —¢€ model.
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Figure 8. Secondary flow streamlines in a rotating 8 x 1 rectangular duct obtained using a

noulinear algebraic Reynolds stress model.
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