UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

(Sﬁsar)lg digital object across data infrastructures using Named Data Networking

de Jong, K.; Fahrenfort, C.; Younis, A.; Zhao, Z.

DOI
10.1109/CCGrid49817.2020.00013

Publication date
2020

Document Version
Author accepted manuscript

Published in
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

License
CcCBY

Link to publication

Citation for published version (APA):

de Jong, K., Fahrenfort, C., Younis, A., & Zhao, Z. (2020). Sharing digital object across data
infrastructures using Named Data Networking (NDN). In L. Levevre, C. A. Varela, G. Pallis, A.
N. Toosi, O. Rana, & R. Buyya (Eds.), 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing: proceedings : 11-14 May 2020, Melbourne, Australia (pp. 87 3-
880). IEEE Computer Society. https://doi.org/10.1109/CCGrid49817.2020.00013

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Download date:10 Mar 2023

https://doi.org/10.1109/CCGrid49817.2020.00013
https://dare.uva.nl/personal/pure/en/publications/sharing-digital-object-across-data-infrastructures-using-named-data-networking-ndn(9b575934-2d84-43c4-91bc-fcd4a2b9b8dd).html
https://doi.org/10.1109/CCGrid49817.2020.00013

Sharing digital object across data infrastructures
using Named Data Networking (NDN)

Kees de Jong, Cas Fahrenfort, Anas Younis, Zhiming Zhao
Multiscale Networked Systems
University of Amsterdam
Amsterdam, the Netherlands
kees.dejong @surfsara.nl, casfahrenfort@live.nl, anas.younis@os3.nl, z.zhao@uva.nl

Abstract—Data infrastructures manage the life cycle of digital
assets and allow users to efficiently discover them. To improve
the Findability, Accessibility, Interoperability and Re-usability
(FAIRness) of digital assets, a data infrastructure needs to
provide digital assets with not only rich meta information
and semantics contexts information but also globally resolvable
identifiers. The Persistent Identifiers (PIDs), like Digital Ob-
ject Identifier (DOI) are often used by data publishers and
infrastructures. The traditional IP network and client-server
model can potentially cause congestion and delays when many
consumers simultaneously access data. In contrast, Information
Centric Networking (ICN) technologies such as Named Data
Networking (NDN) adopt a data centric approach where digital
data objects, once requested, may be stored on intermediate hops
in the network. Consecutive requests for that unique digital object
are then made available by these intermediate hops (caching).
This approach distributes traffic load more efficient and reliable
compared to host-to-host connection oriented techniques, and
demonstrates attractive opportunities for sharing digital objects
across distributed networks. However, such an approach also
faces several challenges. It requires not only an effective trans-
lation between the different naming schemas among PIDs and
NDN, in particular for supporting PIDs from different publishers
or repositories. Moreover, the planning and configuration of an
ICN environment for distributed infrastructures are lacking an
automated solution. To bridge the gap, we propose an ICN
planning service with specific consideration of interoperability
across PID schemas in the Cloud environment.

Index Terms—Named Data Networking, Persistent Identifier,
Digital Object Interface Protocol, FAIRness, Network Functions
Virtualization

I. INTRODUCTION

Data infrastructures manage the life cycle of data assets,
and allow users to effectively discover and utilize data for
their specific purposes. Typical examples include EuroArgo'
and SeaDataNet? for ocean observation data, Integrated Car-
bon Observation System Research Infrastructure (ICOS)? and
Aerosol, Clouds and Trace Gases (ACTRIS)* for air monitor-
ing data, and European Plate Observing System (EPOS)> for
solid earth monitoring. Those data infrastructures (sometimes
also called research infrastructures) become important facili-
ties for enabling data centric research, and can significantly

Uhttps://www.euro-argo.eu/
Zhttps://www.seadatanet.org/
3https://www.icos-ri.eu/
“https://www.actris.eu/
Shttps://www.epos-ip.org/

enhance the feasibility for research at the system level, e.g.,
for studying global climate change and natural disasters.

However, to effectively discover and utilize resources across
different infrastructures, users still face the challenges of lim-
ited FAIRness of digital assets. It becomes a common problem
for many research infrastructures to improve their FAIRness;
several projects have been funded for this purpose. The EU
recently funded project ENVRI-FAIR® is such an effort for
improving the FAIRness for more than 10 environmental
research infrastructures. In this context, the globally resolvable
identifier (also called (PID)) of digital objects and their rich
contextual metadata are often highlighted as important aspects,
as recommended in the 11 principles of FAIRness’.

Moreover, the classical client-server, or P2P solutions are
lacking support for distributing digital objects from hetero-
geneous repositories, in particular for handling continuously
growing data quantity, sources and involved users (network
congestion). Protocols like the Digital Object Interface Proto-
col (DOIP) have also been recommended by the community
of Research Data Alliance (RDA) to handle the sharing of
digital objects. However, it is still challenging to share data
with a PID among different infrastructures. This is due to the
incompatible nature between the different schemas used in the
PID standards.

Furthermore, network technologies such as Software De-
fined Networking (SDN) [1] provide application aware adapt-
ability. While Network Functions Virtualization (NFV) [2]
may provide efficient resource management and sharing over
common network infrastructures. However, these advanced
technologies still lack seamless support for being embedded
in the data management life cycle, e.g., for discovering and
sharing digital objects with PIDs. Koulouzis et al. discussed
the feasibility to use ICN solutions like NDN to distribute the
digital objects with PIDs. However, the work did not solve the
challenge of the incompatible (heterogeneous) nature between
the PID standards, and only implemented the PID schema from
a single publisher [3]. Cloud caching [4] and data lake [5] are
other types of solutions which focus on smart caching of the
digital objects across distributed infrastructures, but did not
have an explicit model of the data contents global resolvable

Swww.envri-fair.eu/

"https://www.force11.org/

identifiers.

On the other hand, network technologies have made sig-
nificant progress during the past years for improving distri-
bution efficiency, e.g., Content Delivery Networks (CDNs)
[6], BitTorrent [7] and NDN [8]. Like NDN, a CDN also
places content closer to its users. This is done by caching
data in multiple geographical locations which, in a CDN,
are reachable over IP (often via anycast). In NDN, data is
routed by name instead of IP. NDN has another advantage
over IP, NDN is able to use multiple paths and unlike IP
it is able to handle loops on the forwarding layer. A loop-
free topology is realized by inserting a nonce in every interest
packet (query) which allows to identify duplicate interests for
named data, allowing multiple paths to be used which may
increase throughput efficiency. Information about paths in the
network are maintained in a layer called the strategy layer.
This layer keeps track of two-way traffic and changes local
forwarding decisions based on traffic observations. The term
*face’ is used in NDN to describe a connection to a forwarder,
which may be of any class of the underlay (e.g. IP, Bluetooth,
etc.). Furthermore, similar to NDN, CDNs may serve as a
mitigation for Distributed Denial-of-Service (DDoS) attacks
[9].

BitTorrent tries to determine the best peers based on trail-
and-error. The protocol ‘chokes’ and ‘unchokes’ peers in order
to guess the best quality peers to download from. This method
is applied because unlike NDN, BitTorrent has no knowledge
of the network topology and routing policies. Furthermore,
data can only be verified in the application layer. Unlike
BitTorrent, NDN has the ability to detect corrupt data in the
network layer (instead of the application layer) by the use of
cryptographic hashes. Therefore, corrupt data is not forwarded
once corruption is detected and thus saving bandwidth.

In this paper, we extend our earlier work of NDN-as-a-
service for PID data objects (NaaS4PID) [3], and specifically
look at three aspects in applying NDN in data infrastructures:
1) how to seamlessly publish version controlled digital ob-
jects with a PID, 2) how to plan and deploy a customized
virtual NDN environment for user communities on different
infrastructures, and 3) how to distribute digital objects from
distributed data sources with heterogeneous PID publishers.
We will use a case study from SeaDataNet and structure the
paper in five parts. First we will briefly introduce the pilot use
case, and review the state of the art and related work. And
then we will present the proposed solution and demonstrate
its usage based on the use case.

II. PROBLEM BACKGROUND, CHALLENGES AND RELATED
WORK

A data infrastructure often aggregates several data sources,
and provide their metadata via catalogues for users to precisely
discover data assets. To deliver high quality services to the user
community, an infrastructure like SeaDataNet often has to face
several challenges:

1) Fault tolerance challenges. SeaDataNet originally only
gathers metadata from remote repositories, and the user

has to access the individual remote repositories® to

obtain data. Such client-server style not only creates
high load for the repository but also network traffic
congestion.

2) Performance challenges. A Cloud replica has been cre-
ated in SeaDataNet to duplicate each remote repository
in the Cloud. In this way, the clients can directly retrieve
the copy of data assets from the Cloud server. How-
ever, such a solution also needs careful customization
for load-balancing and service placement to reach the
required quality of service or user experiences.

3) Scalability challenges. SeaDataNet faces the continuous
growth of both data providers and the user communities.
In many cases, geo special data retrieval needs calcu-
lation of the region, layers and the time duration. The
system has to face scalability challenges of both network
and the server capacity.

In the rest of the section, we will review the related work of
these topics and discuss the key contributions of our work.

A. Persistent Identifiers

PIDs are in essence a permanent reference to a document,
file, web page or data object. Generally, a PID is assigned to
a digital data object on request of the client, after which the
service guarantees that whenever this identifier is resolved,
it will provide necessary meta information about the digital
object. PIDs do not guarantee that the digital object will be
available forever; a PID should still be resolvable (to the
metadata) even if the digital object has been deleted.

PIDs often have different ‘namespaces’ which can be used
to point to different sub-resolvers, much like how URLs
can have different sub-domains. These namespaces can be
used to allow a single resolver to resolve multiple top-level
PIDs to a number of distinct resolvers which have their own
PID resolution system and separate repositories for storing
data. This structure allows multiple different organizations to
resolve data using a single PID scheme, as long as they agree
to uphold the persistence policies set by the top-level resolver.
Typical schemas of PID include DOI, Uniform Resource Name
(URN) and Persistent Uniform Resource Locator (PURL).
PIDs are often provided by the third party registers, like the
European Persistent Identifier Consortium (ePIC), DataCite,
ORCID and ISNI.

B. PID objects over ICN

Karakannas proposed a mapping architecture for resolving
PIDs to ICN names by the use of a mapping server, and for
delivering big data with PIDs [11].

Mousa researched the fetching and sharing of DOI objects
with ICN such as NDN. The researcher’s approach focused
only on DOI digital objects within NDNs. The researcher
explained that the difference in NDN naming of different PID
providers must be taken into account, such that the correct

8We distinguish repository and registry based on the Digital Object Archi-
tecture; registry is for storing metadata while the repository is for storing the
data objects. They can often be combined [10].

prefix is used within NDN to identify specific PID types. In the
researcher’s design, the translation happened in the consumer’s
browser. The consumer has the choice to either request the
digital object by its NDN name or PID [12].

Kolouzis et al. continued the research done by Karakannas
[11] and Mousa [12] and proposed an architecture to map PIDs
into the naming schema of NDN. A PID2NDN gateway was
proposed for resolving PIDs to NDN names, an NDN node
that implements a virtualized NDN router, and an NDN4PID
manager for automating the management of the NDN overlay
in Cloud or e-infrastructure.

C. Named Data Networking

When the Internet was conceived it was designed for host-
to-host communication. This means that in order to retrieve
data, a host needs to retrieve the data from an IP address.
Nowadays the Internet is increasingly data-oriented rather
than host-oriented. When many data consumers request the
same content, congestion may occur. Data locality sits on
top of that problem, since data needs to cross distance as
well, resulting in latency. Several technologies and methods
have been developed to assist in efficient data distribution to
improve performance.

NDN is a popular ICN implementation, although it is not
yet implemented on a large scale. There have been several
large testbeds established during the past years, e.g., for
scientific research in delivering climate data [13], and the
hadron collider network [14]. From those practices, NDN
provided performance improvements compared to classical
data delivery techniques based on IP. In those work, cache
size played an important role in optimising performance, and
a 1GB NDN cache at the edge of the NDN can already
significantly improve data distribution and reduce the network
load. However, native NDN congestion control is still an open
research area [15].

Koulouzis et al. investigated different strategies for caching,
replacement and forwarding for different size data objects, and
concluded that the ‘leave copy everywhere’ caching strategy
provided the best performance ratio between cache size to
digital object size for generic data usage [3]. However, ‘leave
copy down’ and °‘leaving copies with probability’ performed
best for delivering big data objects. Koulouzis et al. also con-
cluded that the ascending ordering of digital objects enhances
network performance when combined with the ‘least recently
used’ caching strategy. Yuan et al. [16] used the Content-
Centric Networking (CCNXx) application’ to investigate NDN
forwarding strategies, and concluded that packets with long
names often degraded performance. Tortelli et al. researched
the effectiveness of two opposite forward strategies; flooding
and best-route (with and without caching) [17]. Several exper-
iments lead them to the conclusion that there are pros and cons
in each forwarding strategy. But that it is difficult to determine
the best performing forward strategy.

9https://wiki.fd.io/view/Cicn

Those practices and performance characteristics provide
valuable information for designing and customising an NDN
environment.

D. Network planning and customization

Planning and customizing the topology and capacity of a
network is crucial to meet the requirements of applications.
McCabe applies a systems methodology approach towards
network design [18], and identifies three core phases; analysis,
architecture and design. These simple, yet important plan-
ning phases describe how to make technology and topology
decisions in a network, especially for large deployments.
These decisions are guided based on inputs, the initial input
may be from users and/or from network metrics. Then the
analysis phase determines the relationships between users,
applications, devices and networks and translates that into a
flow analysis. The architecture and design phase determines
a high-level network design and implementation plan. This
helps to determine the location of the NDN nodes across
(global) data centers by the use of cloud orchestrators, as will
be discussed in more detail later.

Using SDN and other programmable network technologies,
developers can control the flows via the service interface
provided by the network control plane [19]. Using the Cloud
environment, the virtual networks can be fully customized
and manipulated based on the application constraints. In [20]
[21], Wang et al., proposed a critical path based approach to
plan a virtual infrastructure, including virtual machines, their
topology, and the placement of SDN controllers. Those work
were so far mainly for the traditional IP based networks. The
planning solutions for an ICN network is still quite limited.

E. Summary

From the discussion, we can clearly see the advantages
of using ICN technologies in distributing digital objects;
however, an ICN has not yet been widely deployed as a
physical infrastructure, except experimental testbeds. The PIDs
of digital objects are crucial to make digital assets FAIR.
Seamless integration between NDNs and the heterogeneous
PID repositories are still a challenge due to the different PID
schemas in use.

In this context, we specifically highlighted three challenges
in setting up ICN environments in the Cloud: i) complexity
of the data publishing and PID assignment, ii) automation
of virtual NDN environment planning and provisioning and
iii) interoperability among heterogeneous PID schema and the
NDN namespace. To tackle those challenges, we will bring
the follow three contributions:

1) Provide services to enable data managers to seamless
publish data objects and obtain PIDs during the data
management life cycle.

2) Provide a network planner to plan virtual NDN environ-
ments based on the characteristics of the data sources
and user access patterns.

3) Develop a PID interoperability service in the NDN for
handling different PID schemas.

III. PROPOSED SOLUTION

An on demand NDN environment manager for data infras-
tructures, or Named Data Networking for Data Infrastructures
(NDN4DI), is proposed to facilitate the application of NDN in
the context of data infrastructures. Fig. 1 shows the basic idea.
The system aims to provide support for 1) a data manager
to publish data objects and obtain the PID for them, and
2) plan a customized NDN environment at Cloud providers,
and 3) automate the provision and deployment of the planned
environment. After the NDN environment is in operation, the
NDN4DI also provides functions for handling PID repositories
from different publishers.

Repository of
published data

— |
Orﬂe_marmuj || = = = | Ppublsher (1D
environment | : registry)
o
|

Data manager

Version control
manager for data
infrastructures
(NDN4DI)

Internal data !
repository I NDN-as-a-Service
(with Interoperable PID)

A data infrastructure NDN NDN
environment environment
planner automation

NDN <y

environment
operator

Fig. 1. Basic idea of the proposed on demand NDN planner solution for data
infrastructures

A. PID assignment during data management

Lots of existing data infrastructures are originated from
early legacy systems, e.g., environmental observation stations,
and lack of a global data identifier centered design for data
services.

Following from the workflow in Fig. 2, it is divided into
three distinct parts: Version control system, data publication
and data distribution. Content created by community content
providers is processed and stored (in its internal repository) by
the version control system in any form that is required by its
specific use case. Once submitted content has been approved,
it is published to persistent data and metadata repositories by
any PID schema. From there, the data can be discovered and
accessed by content consumers through the NDN by the use
of the NaaS4PID service.

B. Support multiple PID repositories

To distribute data objects with PID over NDN, we have to
handle the interface between NDN nodes and the repositories
of PID data objects. The PID to NDN gateway is the key
component, as shown in Fig. 3. The general idea is that a
user enters a PID of the digital object that the user wants
to retrieve at the client and gets back the requested digital
object. The retrieval of a digital object depends if it is already
published in the NDN or not. The PID to NDN gateway

Business
Logic

Teacher

Create material
Upload material

Create digital object

Version Digital object Metadata
Control Repository Repository
epositon T

Store digital object

Retun digital object

Store digital object

Store metadata

Fig. 2. A basic scenario for publishing data objects from a version control
system.

implements the translation of different PID types and sends the
translated name back to the client. Furthermore, we identify
PID types based on pattern matching as described by Mousa
[12]. PID metadata can be used to substitute missing fields in
the PID URN in order to create an NDN compatible hierarchy.
Research done by Olschanowsky et al. was used for deriving
NDN names from metadata [22].

Underline: initial path of user request
Bold: path if object is available in NDN
Cursive: path if object is not available in NDN

PID
server

6b. Retrieve object from

PID server (to store it in 7c. Retrieve object from
NDN)

PID server if not in NDN
GW:

3, Translates PID to NDN
1. Open socket
2. send PID request to Gateway

4. Checks if object is
Ppublished in NDN

5a. If published, send
NDN name to client (step
6a)

6a. Send NDN name (cont. step 7a)
or PID link to client (cont. step 7c)

User
Enters PID
5b. If not published send
request to PID server (step

6b) and send PID link to
client (step 6a)

7a. Request NDN 10. NDN object

7b. Cache PID object in
NDN retrieval by client

8. Retrieve object from NDN cache

NDN router 3 § NDN
9. Cache NDN object in router nearby client

Fig. 3. Virtual NDN functions for achieving PID interoperability

The gateway is responsible for translating a PID to an NDN
compatible name. If the digital object is already available in
NDN, then the gateway sends the translated NDN name back
to the client. The client then retrieves the digital object from
NDN. If the digital object is not available in NDN, then the
gateway sends back the PID link to the client and caches the
digital object in NDN for future requests.

We implemented the Handle PID type, the URN PID type
schema of the national library of the Netherlands, as well
as the DOI type schema of PANGAEA. Based on pattern
matching of the PID type schema'?, the gateway detects what
kind of PID type it has to translate to NDN. Then, when a PID
type matches, the associated function is called to translate the

10https://github.com/Aqual.lte/rp2/blob/master/Scripts/pid_server.py#
L58-L62

PID to an NDN compatible name!!. The matching patterns of
most standardized PID type schemas are documented in the
ePIC Data Type Registry (DTR)'?, and can be implemented
in the gateway to support a wide range of PID types.

C. NDN on virtual infrastructures

The NDN planning component models the NDN function as
containers, and plans an NDN environment based on the VM
based virtual infrastructure. Fig. 4 illustrates the basic idea.

Cloud provider ‘mulhouse’ Cloud provider ‘nimes’

Internet
(1P underlay)

PID
provider

Fig. 4. High-level network design.

The virtual functions for NDN nodes are as follows, the
producer is assigned the function to make data available in
the NDN. The consumer is assigned to request data from the
producer. However, in NDN, any node that has named data,
can reply to interest packets. So the producer and consumer
functions can be interchangeable. The router’s function is to
forward interest packets between the two cloud providers.

The planning procedure is designed based on the basic
principle in [18], but in the following steps:

1) Select the proper size of the virtual machine, based on
the location of the data sources and the users.

2) Based on the typical size of the data objects, estimate the
optimal size of the cache of each node. This has to be
bound to the total budget planned for the environment.

3) Place the NDN function on the nodes e.g., NDN gate-
ways, and the NDN routing functions.

A virtual NDN environment is thus a set of networked
virtual machines, with the deployment of containers for NDN
functions. The description of the virtual machines, topologies,
and the NDN functions are described using a standardised
language called Topology and Orchestration Specification for
Cloud Applications (TOSCA) [23]. TOSCA provides a rich
set of elements, e.g., nodes, relationships and interfaces, to
describe the basic structure of the virtual machines. Relation-
ships between the virtual machines and the NDN functions
may be enforced with TOSCA primitives such as ‘dependsOn’,
‘hostedOn’ and ‘connectsTo’.

Interfaces are used to control the life cycle of a component
and consist as a set of hooks to trigger actions, these actions

https://github.com/AqualL1te/rp2/blob/master/Scripts/pid_server.py#
L17-L37

2http://dtr-test.pidconsortium.eu/

are create, configure, start, stop or delete. These hooks can be
triggered to e.g. configure and create containers, stop or start a
service or do system maintenance such as delete artifacts after
a service is stopped. An abstract example is shown in Fig. 5.

In Fig. 5, a TOSCA diagram is illustrated. This diagram
represents an abstract template description of the TOSCA
relationships, in which the gray rectangular boxes are the core
scalability factors. The scaling properties are highlighted in
the rectangular areas. The left area, highlighted as ‘scaling
infout resources’ contain a dependency chain of the virtual
NDN functions.

D. NDN automation

An NDN is typically distributed geographically. Therefore,
deploying NDN on global Cloud providers allows a broad
distribution. The heterogeneous nature in Cloud environments
can make deployment automation and management compli-
cated. The NDN4DI automates the provisioning of the TOSCA
description in the virtual NDN environment using Dynamic
Real-time Infrastructure Planner (DRIP) [24], an engine de-
veloped by the same team in earlier projects. Kubernetes is
employed to automate the orchestration of the containerized
NDN functions.

In Fig. 5, a VM needs to be provisioned first (step 1),
before a pod (container) can be deployed on Kubernetes (step
2 to 5). This is described by the ‘dependsOn’ relationship.
Furthermore, with the requirements defined, input constraints
are described. These constraints are used by the orchestrator to
make sure that the NDN infrastructure has sufficient resources
available to operate. Once a VM is deployed, the dependency
for Kubernetes is satisfied, thus Kubernetes can then be setup
(step 2). Kubernetes can then deploy pods by the use of
interfaces (step 3). These interfaces feed the containers with
environment variables such as the gateway, a list of routes,
the transport protocol for NDN, the NDN strategies and on
which Kubernetes node this pod should run. The environment
variables are given to the interface via the TOSCA inputs.
These environment variables are then used by scripts that run
inside the pods to setup NDN. Several constraints are set
for these environment variables such as which valid transport
protocols can be used for NDN, which NDN strategies are
valid and which nodes are available. These constraints are
defined with e.g. ‘valid_values’ or ‘greater_than’ definitions.
These constraints help to guide the orchestrator to verify the
inputs that are given for the template description. As illustrated
in the second gray area ‘scaling in/out the application’, several
pods can be instantiated (step 5a, 5b and 5c) from the image
(step 4). These pods enable the virtual NDN functions. These
pods establish the NDN and therefore are connected via the
‘connectsTo’ relationship. This network expands over to other
Kubernetes nodes in the cluster by the use of the Kubernetes
built-in overlay network.

IV. SYSTEM PROTOTYPE

The data publishing tool is prototyped as a service, which
provides an interface for both user interaction (Fig. 6) and

Inputs i (

1 { Inputs

gateway: string
routes: string

protocol: string { valid_values } [tcp, udp]

mem_size: { get_input: my_mem }
disk_size: { get_input: my_disk }

num_cpus: { get_input: my_cpus }

my_mem: integer { greater_than } [12] (GB)
==l disk_size: integer { greater _than } [100] (GB)

num_cpus: integer { greater_than } [4]

forward_strategy: string { valid_values } [best-route, ...]

replacement_strategy: string { valid_values } [fifo, ... |

caching_strategy: string {valid_values } [leave-copy-everywhere, ...]

dependsCn

' runs_on: string { valid_values } [mulhouse, nimes |

name: string name: string
[3] Interface
from: string from: string
create: () pod: string
entrypoint; strin entrypoint: strin
configure: () service: string i i
start: ()
stop: ()
connectsTo
delete: () dependon
[5c] Container type: Consumer
name: string
name: string SR & from: string

Scaling inlout resources

r’ [5a] Container type: Router ‘1 r’[Sb] Container type: Pmducerw

entrypoint: string

Scaling infout the application

Fig. 5. TOSCA diagram.

Repo 1

Add repository

Repository information

Version Control System
® Git

Subversion
Repository URL *

https://github.com/author/repository

The web URL to your public GitHub repository.

Snapshot selection

® Publish entire repository
Only the contents of the .git folder are published

Publish specific snapshot
Only the files of the selected snapshot are published, excluding the .git folder

Publishing information

Publishing Environment
© EUDAT - B2SHARE
Additional information.

figshare
Additional information.

Harvard Dataverse
Additional information.

Fig. 6. Screen capture of the publishing tool.

a RESTful APIL. Via this interface, a user can configure an
expected external repository, select a data snapshot from the
version control system, and perform the publishing operation
to obtain a PID for it.

The orchestrators mentioned, when combined with a
TOSCA parser are still in an experimental phase. Therefore, in
our prototype we deployed the 2 VMs and Kubernetes nodes
manually. In practice the life cycle of also the Kubernetes

pods are managed by a TOSCA orchestrator. Without having
a TOSCA-ready orchestrator available, steps 2 through 5 in
Fig. 5 were be carried out by Kubernetes exclusively. This
was done by defining the configuration properties of the
pods manually'®. These properties include the NDN function
name, e.g. router, producer or consumer. And also includes
the routes (NDN prefixes) and the associated NDN face with
the transport protocol to use (TCP or UDP). These parameters
were then inserted into the NDN Forwarding Information Base
(FIB) by the scripts that were executed inside the pod'4.
The NDN strategies were also configured by these scripts.
Furthermore, the PID to NDN name translation prototype
(section III-B) is containerized as NFV pods in our deployment
prototype (NDN4DI. This enables flexible scaling by the use
of Cloud providers.

A. Performance characterstics

The current prototype of NDN4DI has been benchmarked in
a test environment (Fig. 4). We ran the following performance
tests within our proof of concept using a 10MB, 100MB,
250MB, 500MB and a 1000MB digital data object size. We
performed the performance tests ten times for each digital
object size and protocol. The different digital object sizes were
chosen in order to determine if there is a certain trend between
the digital object size and performance. The performance trend
is illustrated in Fig. 7 and shows the average of the test
runs. We can observe that NDN over UDP outperforms the
TCP/IP connection used for retrieving data objects from the

Bhttps://github.com/AquaL 1te/rp2/blob/master/Kubernetes/
expanded-cluster.yml

“https://github.com/AquaL1te/rp2/blob/master/Docker/producer/
docker-entrypoint.sh

Handle PID server that we setup with all chosen object sizes.
Furthermore, NDN over TCP outperforms NDN over UDP.
This result correlates with the research done by Lim et al. [13].
Fig. 7 illustrates that the performance converges with a 250MB
digital object. We can therefore conclude that the relative
performance difference between NDN and TCP/IP becomes
smaller with object sizes larger than 250MB. Research done by
Oran concluded that this observation is due to NDN’s nature
of handling big object sizes. Which may cause a performance
problem due to the cost of retransmission when interests are
retransmitted (or re-issued) [25].

45000

40000

35000

30000

25000

20000

Milliseconds (less is better)

250MB
Object size

500MB 1000MB

@= NDN (TCP) =@= NDN (UDP) n@uTCR/IP

Fig. 7. Object size to performance relation.

The results gathered were merely based on best-effort test
scenarios and are inconclusive. Therefore, further and more
detailed research is required.

B. A SeaDataNet case study

Taking the data management scenario of SeaDataNet de-
scribed in II as an example, the proposed NDN4DI solution
can be utilized in several ways.

1) Fault tolerance challenges. By using the on demand
NDN environment, the digital data objects from the
distributed repositories will be cached based on the
access frequency in the Cloud. The planner can be used
to compute and optimize cache sizes, and the topology
of the NDN nodes. In this case, the single point of failure
of the remote repository can be avoided.

2) Performance and scalability challenges. Using the con-
tainerized NDN function over a virtual infrastructure,
nodes and the containers can be scaled out efficiently.
We have not demonstrated the software in this paper;
however, the feasibility of auto-scaling of the virtual
machine and the auto-configuration of NDN nodes can
clearly realise it.

3) PID of data objects. The data publishing tool can be
utilized by the remote data sources to automate the

publishing of their data products. In the context of data
infrastructures, a PID is often not a technical question;
the most difficult part is for the community to agree on
a standard. In this paper, we did not discuss that part,
but only focused on the technical aspects in automating
the publishing workflow.

4) With NDN4DI, multiple PID types can be integrated
into the NDN. Furthermore, by utilizing NDN, network
load may be more distributed by the use of in-network
caching, which also lowers latency for the data con-
sumers. NDN4DI allows flexible scaling by the use of
NFV and Cloud providers. This flexibility mostly stems
from the central point of orchestration which enables an
infrastructure to adjust for higher network loads.

V. SUMMARY

In this paper, we discussed the data sharing challenges in
the data infrastructures and proposed an NDN based solution
(NDN4DI) to tackle the challenge. We presented three key
components in the NDN4DI system, and discussed their pro-
totypes based on the PID, Cloud and NDN technologies.

A. Discussion

We adopted a system based network planning approach,
based on McCabe’s method [18] to create a high-level design
of the NDN in TOSCA. By using the TOSCA standard, de-
ployments in TOSCA-ready Cloud providers are possible with
a uniform deployment description. This flexibility allows the
data distribution network to scale easily and make management
uncomplicated. However, TOSCA-ready Cloud providers are
still rare, for our prototype to be more relevant, a wider
adoption is needed.

Kubernetes was utilized to keep a central control over
the NDN. However, if these pods do not share the same
persistent cached data, cache misses may occur, which results
in performance degradation. Cache misses are expensive since
they require an update of the cache, which puts load on the
original publisher of the data. Therefore, pods preferably are
configured with persistent data volumes. Kubernetes can also
load-balance requests between a set of identical pods.

The NDN configuration is still complex; a generic solution
is still lacking, which was due to the immature NDN routing
protocols. However, there are two promising routing protocols
in development; Open Shortest Path First for NDN (OSPEN)
by Lan Wang et. al. [26] and Named-data Link State Routing
(NLSR) [27]. With a routing protocol, the NDN management
process would become less complicated and more resilient.

Furthermore, in data infrastructures, identification services
are used and utilize different PID schemas. Our prototype
offers better integration between the identification and the data
transmission services. However, our prototype exists outside of
the NDN source code. For the best application of this function-
ality, we recommend the integration of these interoperability
functionalities into the native NDN source code. This would
remove the need to run a translation gateway.

Large data infrastructures are in general a federated archi-
tecture, where each federation is responsible for its own budget
and infrastructure. However, our prototype assumes central
control over the NDN. Our prototype could be approached in
several ways. The discussed solutions could be deployed as an
internal data-sharing platform per infrastructure and intercon-
nect those NDNs, thus maintaining the federated model. Or,
it could be deployed as a third party data-sharing platform,
where one can deploy and operate the NDN for multiple
infrastructures. Our research did not explore these subjects.
However, it provides the flexibility to deploy these solutions
in such a manner.

B. Conclusions

From the work, we can conclude that Cloud environments
provide elastic resources for planning and customizing NDN
based environments for the distributed data infrastructures to
share data objects. The automated planning, provisioning and
deployment of NDN environments are important to improve
the usability of NDN in distributed data infrastructures. The
proposed NDN4DI solution moves towards that direction.

C. Future work

The work will be continued with case studies with real
operational data infrastructures. First, a detailed performance
comparison with the current Cloud replica solution used by
SeaDataNet and the NDN4DI will be performed. Moreover,
the ENVRI-FAIR is a data infrastructure project which re-
cently started, more than 10 different infrastructures are in the
project. In this context, more use cases will be identified to
improve the implementation of NDN4DI.

ACKNOWLEDGMENT

This research is partially supported by the European Unions
Horizon 2020 research and innovation program under Grants
No. 824068 (ENVRI-FAIR project), 825134 (ARTICONF
project), 862409 (BlueCloud project) and LifeWatch ERIC.

REFERENCES

[1] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,”
arXiv preprint arXiv:1406.0440, 2014.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90-97, 2015.

[3] S. Koulouzis, R. Mousa, A. Karakannas, C. de Laat, and Z. Zhao, “Infor-
mation centric networking for sharing and accessing digital objects with
persistent identifiers on data infrastructures,” in 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID). 1IEEE, 2018, pp. 661-668.

[4] D. Dash, V. Kantere, and A. Ailamaki, “An Economic Model for Self-
Tuned Cloud Caching,” in 2009 IEEE 25th International Conference on
Data Engineering. Shanghai, China: IEEE, Mar. 2009, pp. 1687-1693.
[Online]. Available: http://ieeexplore.ieee.org/document/4812593/

[5] D. E. O’Leary, “Embedding ai and crowdsourcing in the big data lake,”
IEEE Intelligent Systems, vol. 29, no. 05, pp. 70-73, sep 2014.

[6] B. Lee, H. Jeon, S. Yoon, and H. Song, “Towards a cdn over icn.” in
DCNET/ICE-B/OPTICS, 2012, pp. 46-51.

[71 S. Mastorakis, A. Afanasyev, Y. Yu, and L. Zhang, “ntorrent: Peer-
to-peer file sharing in named data networking,” in 2017 26th Interna-
tional Conference on Computer Communication and Networks (ICCCN).
IEEE, 2017, pp. 1-10.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 6673,
2014.

Cloudflare, Inc. (2019) What is a cdn? [Online]. Available: https:
/Iwww.cloudflare.com/learning/cdn/what-is-a-cdn/

G. Berg-Cross, R. Ritz, and P. Wittenburg, “Data Foundation and Termi-
nology Work Group Products,” Aug. 2015. [Online]. Available: {https:
/ldoi.org/10.15497/06825049-8CA4-40BD-BCAF-DE9FOEA2FADF }
A. Karakannas and Z. Zhao, “Information centric networking for de-
livering big data with persistent identifiers,” University of Amsterdam,
2014.

R. Mousa, “Application aware digital objects access and distribution
using Named Data Networking,” University of Amsterdam, 2017.

H. Lim, A. Ni, D. Kim, Y.-B. Ko, S. Shannigrahi, and C. Papadopoulos,
“Ndn construction for big science: Lessons learned from establishing a
testbed,” IEEE Network, vol. 32, no. 6, pp. 124-136, 2018.

S. Shannigrahi, C. Papadopoulos, E. Yeh, H. Newman, A. J. Barczyk,
R. Liu, A. Sim, A. Mughal, I. Monga, J.-R. Vlimant et al., “Named
data networking in climate research and hep applications,” in Journal
of Physics: Conference Series, vol. 664, no. 5. IOP Publishing, 2015,
p. 052033.

Y. Ren, J. Li, S. Shi, L. Li, G. Wang, and B. Zhang, “Congestion con-
trol in named data networking—a survey,” Computer Communications,
vol. 86, pp. 1-11, 2016.

H. Yuan, T. Song, and P. Crowley, “Scalable ndn forwarding: Concepts,
issues and principles,” in 2012 21st International Conference on com-
puter communications and networks (ICCCN). 1EEE, 2012, pp. 1-9.
M. Tortelli, L. A. Grieco, and G. Boggia, “Performance assessment of
routing strategies in named data networking,” in /EEE ICNP, 2013.

J. D. McCabe, Network analysis, architecture, and design. Elsevier,
2010.

S. Koulouzis, A. S. Belloum, M. T. Bubak, Z. Zhao, M. ivkovi, and C. T.
de Laat, “SDN-aware federation of distributed data,” Future Generation
Computer Systems, vol. 56, pp. 64—76, Mar. 2016. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167739X1500312X

J. Wang, A. Taal, P. Martin, Y. Hu, H. Zhou, J. Pang, C. de Laat, and
Z. Zhao, “Planning virtual infrastructures for time critical applications
with multiple deadline constraints,” Future Generation Computer
Systems, vol. 75, pp. 365-375, Oct. 2017. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167739X 17301905

J. Wang, C. de Laat, and Z. Zhao, “QoS-aware virtual SDN network
planning,” in 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM). Lisbon, Portugal: IEEE, May 2017, pp. 644—
647. [Online]. Available: http://ieeexplore.ieee.org/document/7987350/
C. Fan, S. Shannigrahi, and C. O. et. al, “Managing
Scientific Data with Named Data Networking,” NDM15, 2015.
[Online]. Available: https://named-data.net/wp-content/uploads/2015/
11/Managing_Scientific_Data.pdf

OASIS. OASIS. [Online]. Available: https://docs.
oasis-open.org/tosca/TOSCA-Simple-Profile- YAML/v1.2/os/
TOSCA-Simple-Profile- YAML-v1.2-0s.pdf

S. Koulouzis, P. Martin, H. Zhou, Y. Hu, J. Wang, T. Carval, B. Grenier,
J. Heikkinen, C. de Laat, and Z. Zhao, “Time-critical data management
in clouds: Challenges and a dynamic real-time infrastructure planner
(drip) solution,” Concurrency and Computation: Practice and Experi-
ence, p. €5269, 2019.

D. Oran. (2019) Maintaining CCNx or NDN flow balance with highly
variable data object sizes. [Online]. Available: https://tools.ietf.org/id/
draft-oran-icnrg-flowbalance-01.html

L. Wang, M. Hoque, C. Yi, A. Alyyan, and B. Zhang, “OSPFN: An
OSPF Based Routing Protocol for Named Data Networking,” Technical
Report NDN-0003, 2012. [Online]. Available: https://www.named-data.
net/techreport/TR0O03-OSPFN.pdf

V. Lehman, M. Hoque, Y. Yu, L. Wang, B. Zhang, and L. Zhang, “A
Secure Link State Routing Protocol for NDN,” Technical Report NDN-
0037, 2016. [Online]. Available: https://named-data.net/wp-content/
uploads/2016/01/ndn-0037-1-nlsr.pdf

