66 research outputs found

    Connectome-based predictive modeling of smoking severity using individualized structural covariance network in smokers

    Get PDF
    IntroductionAbnormal interactions among distributed brain systems are implicated in the mechanisms of nicotine addiction. However, the relationship between the structural covariance network, a measure of brain connectivity, and smoking severity remains unclear. To fill this gap, this study aimed to investigate the relationship between structural covariance network and smoking severity in smokers.MethodsA total of 101 male smokers and 51 male non-smokers were recruited, and they underwent a T1-weighted anatomical image scan. First, an individualized structural covariance network was derived via a jackknife-bias estimation procedure for each participant. Then, a data-driven machine learning method called connectome-based predictive modeling (CPM) was conducted to infer smoking severity measured with Fagerström Test for Nicotine Dependence (FTND) scores using an individualized structural covariance network. The performance of CPM was evaluated using the leave-one-out cross-validation and a permutation testing.ResultsAs a result, CPM identified the smoking severity-related structural covariance network, as indicated by a significant correlation between predicted and actual FTND scores (r = 0.23, permutation p = 0.020). Identified networks comprised of edges mainly located between the subcortical–cerebellum network and networks including the frontoparietal default model and motor and visual networks.DiscussionThese results identified smoking severity-related structural covariance networks and provided a new insight into the neural underpinnings of smoking severity

    Clinical characteristics and prognosis of basaloid squamous cell carcinoma of the lung: a population-based analysis

    Get PDF
    Background This study analyzed the clinical features and prognosis of basaloid squamous cell carcinoma of the lung (BSC), and constructed a nomogram to predict the prognoses of patients. Methods The information of pure BSC patients was obtained in the Surveillance, Epidemiology, and End Results database between 2004 and 2015. Then, it was evaluated, and compared with the data of lung squamous cell carcinoma (SCC), lung large cell carcinoma (LCC) and lung adenocarcinoma (LAC) patients. Subsequently, we used univariate and multivariate analyses to investigate the independent factors related to the prognoses of patients with BSC and constructed a nomogram to verify the prognoses. Results A total of 425 patients diagnosed with BSC were enrolled. Compared with patients with SCC, LCC and LAC, the mean survival time of BSC patients was better than all of them. Compared with SCC, there were significant differences between the characteristics of grade (P < 0.001), total stage (P < 0.001), T stage (P < 0.001), N stage (P < 0.001), M stage (P < 0.001), surgery (P < 0.001), radiotherapy (P < 0.001), and chemotherapy (P < 0.001), while BSC also had significantly different clinical characteristics from LCC and LAC. Univariate and multivariate survival analyses showed that age (P < 0.001), T stage (P < 0.001), N stage (P = 0.009), M stage (P < 0.001), and surgery (P < 0.001) were independent prognostic factors of BSC. The survival of patients undergoing lobectomy was significantly better than sublobar resection, with an OR of 0.389 (0.263–0.578). We constructed a nomogram with a C-index of 0.750 (95% confidence interval) based on the results of multivariate analysis. The calibration curves based on nomogram scores indicated that the nomogram could accurately predict the prognosis of patients. Conclusions BSC had unique clinical and prognostic features. T stage, N stage, M stage, age, and surgery were independently associated with overall survival (OS). Lobectomy was a relative ideal choice for patients with BSC. The nomogram effectively predicted the OS at 1-, 3-, and 5-years

    Targeting the metabolic profile of amino acids to identify the key metabolic characteristics in cerebral palsy

    Get PDF
    BackgroundCerebral palsy (CP) is a neurodevelopmental disorder characterized by motor impairment. In this study, we aimed to describe the characteristics of amino acids (AA) in the plasma of children with CP and identify AA that could play a potential role in the auxiliary diagnosis and treatment of CP.MethodsUsing high performance liquid chromatography, we performed metabolomics analysis of AA in plasma from 62 CP children and 60 healthy controls. Univariate and multivariate analyses were then applied to characterize different AA. AA markers associated with CP were then identified by machine learning based on the Lasso regression model for the validation of intra-sample interactions. Next, we calculated a discriminant formula and generated a receiver operating characteristic (ROC) curve based on the marker combination in the discriminant diagnostic model.ResultsA total of 33 AA were detected in the plasma of CP children and controls. Compared with controls, 5, 7, and 10 different AA were identified in total participants, premature infants, and full-term infants, respectively. Of these, β-amino-isobutyric acid [p = 2.9*10(−4), Fold change (FC) = 0.76, Variable importance of protection (VIP) = 1.75], tryptophan [p = 5.4*10(−4), FC = 0.87, VIP = 2.22], and asparagine [p = 3.6*10(−3), FC = 0.82, VIP = 1.64], were significantly lower in the three groups of CP patients than that in controls. The combination of β-amino-isobutyric acid, tryptophan, and taurine, provided high levels of diagnostic classification and risk prediction efficacy for preterm children with an area under the curve (AUC) value of 0.8741 [95% confidence interval (CI): 0.7322–1.000]. The discriminant diagnostic formula for preterm infant with CP based on the potential marker combination was defined by p = 1/(1 + e−(8.295–0.3848* BAIBA-0.1120*Trp + 0.0108*Tau)).ConclusionFull-spectrum analysis of amino acid metabolomics revealed a distinct profile in CP, including reductions in the levels of β-amino-isobutyric acid, tryptophan, and taurine. Our findings shed new light on the pathogenesis and diagnosis of premature infants with CP

    Integrated rocksalt–polyanion cathodes with excess lithium and stabilized cycling

    Get PDF
    Co- and Ni-free disordered rocksalt cathodes utilize oxygen redox to increase the energy density of lithium-ion batteries, but it is challenging to achieve good cycle life at high voltages &gt;4.5 V (versus Li/Li+). Here we report a family of Li-excess Mn-rich cathodes that integrates rocksalt- and polyanion-type structures. Following design rules for cation filling and ordering, we demonstrate the bulk incorporation of polyanion groups into the rocksalt lattice. This integration bridges the two primary families of lithium-ion battery cathodes—layered/spinel and phosphate oxides—dramatically enhancing the cycling stability of disordered rocksalt cathodes with 4.8 V upper cut-off voltage. The cathode exhibits high gravimetric energy densities above 1,100 Wh kg−1 and &gt;70% retention over 100 cycles. This study opens up a broad compositional space for developing battery cathodes using earth-abundant elements such as Mn and Fe

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill &amp; Melinda Gates Foundation

    The Intestinal Bacterial Community and Functional Potential of Litopenaeus vannamei in the Coastal Areas of China

    No full text
    Intestinal bacteria are crucial for the healthy aquaculture of Litopenaeus vannamei, and the coastal areas of China are important areas for concentrated L. vannamei cultivation. In this study, we evaluated different compositions and structures, key roles, and functional potentials of the intestinal bacterial community of L. vannamei shrimp collected in 12 Chinese coastal cities and investigated the correlation between the intestinal bacteria and functional potentials. The dominant bacteria in the shrimp intestines included Proteobacteria, Bacteroidetes, Tenericutes, Firmicutes, and Actinobacteria, and the main potential functions were metabolism, genetic information processing, and environmental information processing. Although the composition and structure of the intestinal bacterial community, potential pathogenic bacteria, and spoilage organisms varied from region to region, the functional potentials were homeostatic and significantly (p &lt; 0.05) correlated with intestinal bacteria (at the family level) to different degrees. The correlation between intestinal bacteria and functional potentials further suggested that L. vannamei had sufficient functional redundancy to maintain its own health. These findings help us understand differences among the intestinal bacterial communities of L. vannamei cultivated in different regions and provide a basis for the disease management and healthy aquaculture of L. vannamei

    Thesis full document

    No full text
    corecore