129 research outputs found

    On Modeling and Analysis of MIMO Wireless Mesh Networks with Triangular Overlay Topology

    Get PDF
    Multiple input multiple output (MIMO) wireless mesh networks (WMNs) aim to provide the last-mile broadband wireless access to the Internet. Along with the algorithmic development for WMNs, some fundamental mathematical problems also emerge in various aspects such as routing, scheduling, and channel assignment, all of which require an effective mathematical model and rigorous analysis of network properties. In this paper, we propose to employ Cartesian product of graphs (CPG) as a multichannel modeling approach and explore a set of unique properties of triangular WMNs. In each layer of CPG with a single channel, we design a node coordinate scheme that retains the symmetric property of triangular meshes and develop a function for the assignment of node identity numbers based on their coordinates. We also derive a necessary-sufficient condition for interference-free links and combinatorial formulas to determine the number of the shortest paths for channel realization in triangular WMNs

    Moderating effects of perceived social support on self-efficacy and psychological well-being of Chinese nurses: a cross-sectional study

    Get PDF
    IntroductionNurses experience significant physical and psychological stress that negatively influences their psychological well-being. The objective of this study was to explore the association between self-efficacy and psychological well-being among Chinese nurses and to assess the moderating effects of perceived social support (PSS).MethodsIn 2020, a hospital-based cross-sectional study using a multistage random sampling approach was performed in five regions of Liaoning, China. Of the 1,200 surveyed nurses, 1,010 completed questionnaires that evaluated the demographic information, 14-item Hospital Anxiety and Depression Scale, General Self-Efficacy Scale, and Multidimensional Scale of Perceived Social Support. To examine the factors associated with mental health parameters, hierarchical multiple regression analysis was performed. The interactions were visualized using a simple slope analysis.ResultsThe mean depression and anxiety scores for Chinese nurses were 8.74 ± 3.50 and 6.18 ± 3.26, respectively. The association between self-efficacy and depression differed between the low perceived social support (PSS) group (1 SD below the mean, β = −0.169, p < 0.01) and high PSS group (1 SD above the mean, β = −0.077, p < 0.01). Similarly, the association between self-efficacy and anxiety differed between the low PSS group (1 SD below the mean, β = −0.155, p < 0.01) and high PSS group (1 SD above the mean, β = −0.044, p < 0.01).ConclusionWe found that Chinese nurses experienced high levels of anxiety and depression. Furthermore, PSS moderates the relationship between self-efficacy and psychological well-being. Therefore, interventions targeting self-efficacy and PSS should be implemented to improve the psychological well-being of nurses

    Energetic fluctuations in amorphous semiconducting polymers: Impact on charge-carrier mobility

    Get PDF
    We present a computational approach to model hole transport in an amorphous semiconducting fluorene-triphenylamine copolymer (TFB), which is based on the combination of molecular dynamics to predict the morphology of the oligomeric system and Kinetic Monte Carlo (KMC), parameterized with quantum chemistry calculations, to simulate hole transport. Carrying out a systematic comparison with available experimental results, we discuss the role that different transport parameters play in the KMC simulation and in particular the dynamic nature of positional and energetic disorder on the temperature and electric field dependence of charge mobility. It emerges that a semi-quantitative agreement with experiments is found only when the dynamic nature of the disorder is taken into account. This study establishes a clear link between microscopic quantities and macroscopic hole mobility for TFB and provides substantial evidence of the importance of incorporating fluctuations, at the molecular level, to obtain results that are in good agreement with temperature and electric field-dependent experimental mobilities. Our work makes a step forward towards the application of nanoscale theoretical schemes as a tool for predictive material screening

    Developing Composite Insulating Cross-Arms for 400 kV Lattice Towers

    Get PDF
    \u3cp\u3ePolymorphism of organic semiconducting materials exerts critical effects on their physical properties such as optical absorption, emission and electrical conductivity, and provides an excellent platform for investigating structure–property relations. It is, however, challenging to efficiently tune the polymorphism of conjugated polymers in aggregated, semi-crystalline phases due to their conformational freedom and anisotropic nature. Here, two distinctly different semi-crystalline polymorphs (β\u3csub\u3e1\u3c/sub\u3e and β\u3csub\u3e2\u3c/sub\u3e) of a low-bandgap diketopyrrolopyrrole polymer are formed through controlling the solvent quality, as evidenced by spectroscopic, structural, thermal and charge transport studies. Compared to β\u3csub\u3e1\u3c/sub\u3e, the β\u3csub\u3e2\u3c/sub\u3e polymorph exhibits a lower optical band gap, an enhanced photoluminescence, a reduced π-stacking distance, a higher hole mobility in field-effect transistors and improved photocurrent generation in polymer solar cells. The β\u3csub\u3e1\u3c/sub\u3e and β\u3csub\u3e2\u3c/sub\u3e polymorphs provide insights into the control of polymer self-organization for plastic electronics and hold potential for developing programmable ink formulations for next-generation electronic devices.\u3c/p\u3

    Cyclohexyl-Substituted Anthracene Derivatives for High Thermal Stability Organic Semiconductors

    Get PDF
    A novel p-type organic semiconductor with high thermal stability is developed by simply incorporating cyclohexyl substituted aryl groups into the 2,6-position of anthracene, namely 2,6-di(4-cyclohexylphenyl)anthracene (DcHPA), and a similar compound with linear alkyl chain, 2,6-di(4-n-hexylphenyl)anthracene (DnHPA), is also studied for comparison. DcHPA shows sublimation temperature around 360°C, and thin film field-effect transistors of DcHPA could maintain half of the original mobility value when heated up to 150°C. Corresponding DnHPA has sublimation temperature of 310°C and the performance of its thin film devices decreases by about 50% when heated to 80°C. The impressing thermal stability of the cyclohexyl substitution compounds might provide guidelines for developing organic electronic materials with high thermal stability

    Development of an Infectious Cell Culture System for Hepatitis C Virus Genotype 6a Clinical Isolate Using a Novel Strategy and Its Sensitivity to Direct-Acting Antivirals

    Get PDF
    Hepatitis C virus (HCV) is classified into seven major genotypes, and genotype 6 is commonly prevalent in Asia, thus reverse genetic system representing genotype 6 isolates in prevalence is required. Here, we developed an infectious clone for a Chinese HCV 6a isolate (CH6a) using a novel strategy. We determined CH6a consensus sequence from patient serum and assembled a CH6a full-length (CH6aFL) cDNA using overlapped PCR product-derived clones that shared the highest homology with the consensus. CH6aFL was non-infectious in hepatoma Huh7.5 cells. Next, we constructed recombinants containing Core-NS5A or 5′UTR-NS5A from CH6a and the remaining sequences from JFH1 (genotype 2a), and both were engineered with 7 mutations identified previously. However, they replicated inefficiently without virus spread in Huh7.5 cells. Addition of adaptive mutations from CH6a Core-NS2 recombinant, with JFH1 5′UTR and NS3-3′UTR, enhanced the viability of Core-NS5A recombinant and acquired replication-enhancing mutations. Combination of 22 mutations in CH6a recombinant with JFH1 5′UTR and 3′UTR (CH6aORF) enabled virus replication and recovered additional four mutations. Adding these four mutations, we generated two efficient recombinants containing 26 mutations (26m), CH6aORF_26m and CH6aFL_26m (designated “CH6acc”), releasing HCV of 104.3–104.5 focus-forming units (FFU)/ml in Huh7.5.1-VISI-mCherry and Huh7.5 cells. Seven newly identified mutations were important for HCV replication, assembly, and release. The CH6aORF_26m virus was inhibited in a dose- and genotype-dependent manner by direct-acting-antivirals targeting NS3/4A, NS5A, and NS5B. The CH6acc enriches the toolbox of HCV culture systems, and the strategy and mutations applied here will facilitate the culture development of other HCV isolates and related viruses

    Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores

    Get PDF
    © 2006 American Institute of Physics. The electronic version of this article is the complete one and can be found at: http://dx.doi.org/10.1063/1.2216699DOI: 10.1063/1.2216699Based on essential-state models for three-photon absorption (3PA), we have investigated the structure-property relationships for stilbene-based dipolar and quadrupolar chromophores. The emphasis lies on the evolution of the 3PA cross section with the degree of ground-state polarization. For dipolar systems, we find a dominant role played by Δμ, which expresses the change in dipole moment between the ground state and the 3PA active excited state. Thus, the strategies usually applied to maximize the second-order polarizability β are also applicable to optimize the 3PA cross section. For quadrupolar systems, the 3PA response is dominated by contributions from channels including various low-lying two-photon allowed states, which limits the applicability of essential-state models. Optimization strategies can be proposed but vary for different ranges of ground-state polarization
    corecore