64 research outputs found
Simple Fluids with Complex Phase Behavior
We find that a system of particles interacting through a simple isotropic
potential with a softened core is able to exhibit a rich phase behavior
including: a liquid-liquid phase transition in the supercooled phase, as has
been suggested for water; a gas-liquid-liquid triple point; a freezing line
with anomalous reentrant behavior. The essential ingredient leading to these
features resides in that the potential investigated gives origin to two
effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur
Phase separating binary fluids under oscillatory shear
We apply lattice Boltzmann methods to study the segregation of binary fluid
mixtures under oscillatory shear flow in two dimensions. The algorithm allows
to simulate systems whose dynamics is described by the Navier-Stokes and the
convection-diffusion equations. The interplay between several time scales
produces a rich and complex phenomenology. We investigate the effects of
different oscillation frequencies and viscosities on the morphology of the
phase separating domains. We find that at high frequencies the evolution is
almost isotropic with growth exponents 2/3 and 1/3 in the inertial (low
viscosity) and diffusive (high viscosity) regimes, respectively. When the
period of the applied shear flow becomes of the same order of the relaxation
time of the shear velocity profile, anisotropic effects are clearly
observable. In correspondence with non-linear patterns for the velocity
profiles, we find configurations where lamellar order close to the walls
coexists with isotropic domains in the middle of the system. For particular
values of frequency and viscosity it can also happen that the convective
effects induced by the oscillations cause an interruption or a slowing of the
segregation process, as found in some experiments. Finally, at very low
frequencies, the morphology of domains is characterized by lamellar order
everywhere in the system resembling what happens in the case with steady shear.Comment: 1 table and 12 figures in .gif forma
CDMS, Supersymmetry and Extra Dimensions
The CDMS experiment aims to directly detect massive, cold dark matter
particles originating from the Milky Way halo. Charge and lattice excitations
are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK,
allowing to separate nuclear recoils from the dominating electromagnetic
background. The operation of 12 detectors in the Soudan mine for 75 live days
in 2004 delivered no evidence for a signal, yielding stringent limits on dark
matter candidates from supersymmetry and universal extra dimensions. Thirty Ge
and Si detectors are presently installed in the Soudan cryostat, and operating
at base temperature. The run scheduled to start in 2006 is expected to yield a
one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on
sources and detection of dark matter and dark energy in the universe, Marina
del Rey, Feb 22-24, 200
Study of the doubly charmed tetraquark T+cc
Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed
- …