3,387 research outputs found
Recommended from our members
Spatial consequences of bridging the saccadic gap
We report six experiments suggesting that conscious perception is actively redrafted to take account of events both before and after the event that is reported. When observers saccade to a stationary object they overestimate its duration, as if the brain were filling in the saccadic gap with the post-saccadic image. We first demonstrate that this illusion holds for moving objects, implying that the perception of time, velocity, and distance traveled become discrepant. We then show that this discrepancy is partially resolved up to 500 ms after a saccade: the perceived offset position of a post-saccadic moving stimulus shows a greater forward mislocalization when pursued after a saccade than during pursuit alone. These data are consistent with the idea that the temporal bias is resolved by the subsequent spatial adjustment to provide a percept that is coherent in its gist but inconsistent in its detail
Recommended from our members
Optimal integration of auditory and vibrotactile information for judgments of temporal order
Recent research that assessed spatial judgments about multisensory stimuli suggests that humans integrate multisensory inputs in a statistically optimal manner by weighting each input by its normalized reciprocal variance. Is integration similarly optimal When humans judge the temporal properties of bimodal stimuli? Twenty-four participants performed temporal order judgments (TOJs,) about 2 spatially separated stimuli. Stimuli were auditory, vibrotactile, or both. The temporal profiles of vibrotactile stimuli were manipulated to produce 3 levels of precision for TOJs. In bimodal conditions, the asynchrony between the 2 unimodal stimuli that comprised it bimodal Stimulus was manipulated to determine the weight given to touch. Bimodal performance on 2 measures-judgment uncertainty and tactile weight-was predicted With unimodal data. A model relying exclusively on audition wits rejected on the basis of both measures. A second model that selected the best input on each trial did not predict the reduced judgment uncertainty observed in bimodal trials. Only the optimal Maximum-likelihood-estimation model predicted both judgment uncertainties and weights the model's validity is extended to TOJs. Alternatives for modeling the process of event sequencing based on integrated multisensory inputs are discussed
Does quality drive employee satisfaction in the UK learning sector?
The purpose of this paper is to provide empirical evidence to assess the nature and extent of the link between employee satisfaction and organisational performance. This paper examines the link between staff satisfaction and organisational performance, presenting findings from 21 colleges of Further Education that have participated in both a survey of staff satisfaction (covering over 2,600 staff from these colleges) and in a diagnostic benchmarking exercise using the “Learning PROBE” methodology. The results suggest that whilst each of the measured aspects of work are regarded as being important by a majority of survey respondents, the level of “satisfaction” displayed in each of these attributes is indicated by only a minority of those surveyed. The findings support the existence of a link between staff satisfaction and organisational excellence. Staff satisfaction levels are most strongly associated with the leadership and service processes indices, and even more so with the overall organisational diagnosis. This suggests that colleges that are implementing “good practices” covering a range of managerial aspects, and who are achieving corresponding organisational results, are likely to be closer to satisfying their staff. Practices relating to people, performance management and organizational results also show association with staff's satisfaction gap, although not as significantly as above. The results suggest an holistic approach to implementing business practices appears to be more effective than concentrating only on deploying good practices in only a single area of the managerial process. The value of the paper is to the UK Further Education Sector in that it identifies those organisational practices, which improved, can in combination address to some extent the work satisfaction levels of their employees
Recommended from our members
The critical events for motor-sensory temporal recalibration
Determining if we, or another agent, were responsible for a sensory event can require an accurate sense of timing. Our sense of appropriate timing relationships must, however, be malleable as there is a variable delay between the physical timing of an event and when sensory signals concerning that event are encoded in the brain. One dramatic demonstration of such malleability involves having people repeatedly press a button thereby causing a beep. If a delay is inserted between button presses and beeps, when it is subsequently taken away beeps can seem to precede the button presses that caused them. For this to occur it is important that people feel they were responsible for instigating the beeps. In terms of their timing, as yet it is not clear what combination of events is important for motor-sensory temporal recalibration. Here, by introducing ballistic reaches of short or longer extent before a button press, we varied the delay between the intention to act and the sensory consequence of that action. This manipulation failed to modulate recalibration magnitude. By contrast, introducing a similarly lengthened delay between button presses and consequent beeps eliminated recalibration. Thus it would seem that the critical timing relationship for motor-sensory temporal recalibration is between tactile signals relating to the completion of an action and the subsequent auditory percept
Recommended from our members
Vibrotactile-auditory interactions are post-perceptual
Vibrotactile stimuli can elicit compelling auditory sensations, even when sound energy levels are minimal and undetectable. It has previously been shown that subjects judge auditory tones embedded in white noise to be louder when they are accompanied by a vibrotactile stimulus of the same frequency. A first experiment replicated this result at four different levels of auditory stimulation (no tone, tone at detection threshold, tone at 5 dB above threshold, and tone at 10 dB above threshold). The presence of a vibrotactile stimulus induced an increase in the perceived loudness of auditory tones at three of the four values in this range. In two further experiments, a 2-interval forced-choice procedure was used to assess the nature of this cross-modal interaction. Subjects were biased when vibrotaction was applied in one interval, but applying vibrotaction in both intervals produced performance comparable to conditions without vibrotactile stimuli. This demonstrates that vibrotaction is sometimes ignored when judging the presence of an auditory tone. Hence the interaction between vibrotaction and audition does not appear to occur at an early perceptual level
A direct procedure for interpolation on a structured curvilinear two-dimensional grid
A direct procedure is presented for locally bicubic interpolation on a structured, curvilinear, two-dimensional grid. The physical (Cartesian) space is transformed to a computational space in which the grid is uniform and rectangular by a generalized curvilinear coordinate transformation. Required partial derivative information is obtained by finite differences in the computational space. The partial derivatives in physical space are determined by repeated application of the chain rule for partial differentiation. A bilinear transformation is used to analytically transform the individual quadrilateral cells in physical space into unit squares. The interpolation is performed within each unit square using a piecewise bicubic spline
Recommended from our members
Neural correlates of subjective timing precision and confidence
Humans perceptual judgments are imprecise, as repeated exposures to the same physical stimulation (e.g. audio-visual inputs separated by a constant temporal offset) can result in different decisions. Moreover, there can be marked individual differences – precise judges will repeatedly make the same decision about a given input, whereas imprecise judges will make different decisions. The causes are unclear. We examined this using audio-visual (AV) timing and confidence judgments, in conjunction with electroencephalography (EEG) and multivariate pattern classification analyses. One plausible cause of differences in timing precision is that it scales with variance in the dynamics of evoked brain activity. Another possibility is that equally reliable patterns of brain activity are evoked, but there are systematic differences that scale with precision. Trial-by-trial decoding of input timings from brain activity suggested precision differences may not result from variable dynamics. Instead, precision was associated with evoked responses that were exaggerated (more different from baseline) ~300 ms after initial physical stimulations. We suggest excitatory and inhibitory interactions within a winner-take-all neural code for AV timing might exaggerate responses, such that evoked response magnitudes post-stimulation scale with encoding success
- …