research

A direct procedure for interpolation on a structured curvilinear two-dimensional grid

Abstract

A direct procedure is presented for locally bicubic interpolation on a structured, curvilinear, two-dimensional grid. The physical (Cartesian) space is transformed to a computational space in which the grid is uniform and rectangular by a generalized curvilinear coordinate transformation. Required partial derivative information is obtained by finite differences in the computational space. The partial derivatives in physical space are determined by repeated application of the chain rule for partial differentiation. A bilinear transformation is used to analytically transform the individual quadrilateral cells in physical space into unit squares. The interpolation is performed within each unit square using a piecewise bicubic spline

    Similar works