research

Optimal integration of auditory and vibrotactile information for judgments of temporal order

Abstract

Recent research that assessed spatial judgments about multisensory stimuli suggests that humans integrate multisensory inputs in a statistically optimal manner by weighting each input by its normalized reciprocal variance. Is integration similarly optimal When humans judge the temporal properties of bimodal stimuli? Twenty-four participants performed temporal order judgments (TOJs,) about 2 spatially separated stimuli. Stimuli were auditory, vibrotactile, or both. The temporal profiles of vibrotactile stimuli were manipulated to produce 3 levels of precision for TOJs. In bimodal conditions, the asynchrony between the 2 unimodal stimuli that comprised it bimodal Stimulus was manipulated to determine the weight given to touch. Bimodal performance on 2 measures-judgment uncertainty and tactile weight-was predicted With unimodal data. A model relying exclusively on audition wits rejected on the basis of both measures. A second model that selected the best input on each trial did not predict the reduced judgment uncertainty observed in bimodal trials. Only the optimal Maximum-likelihood-estimation model predicted both judgment uncertainties and weights the model's validity is extended to TOJs. Alternatives for modeling the process of event sequencing based on integrated multisensory inputs are discussed

    Similar works