16 research outputs found

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin)

    No full text
    peer reviewedThe Oubangui is a major tributary of the Congo River. We describe the biogeochemistry of contrasting tributaries within its central catchment, with watershed vegetation ranging from wooded savannahs to humid rainforest. Compared to a 2-year monitoring record on the mainstem Oubangui, these tributaries show a wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity, and total alkalinity) in rainforests to those more typical for savannah systems. Spectral analyses of chromophoric dissolved organic matter showed wide temporal variations in the Oubangui compared to spatio-temporal variations in the tributaries, and confirm that different pools of dissolved organic carbon are mobilized during different hydrological stages. d13C of dissolved inorganic carbon ranged between -28.1 per mil and -25.8 per mil, and was strongly correlated to both partial pressure of CO2 and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the weathering regime on CO2 fluxes. All tributaries were oversaturated in dissolved greenhouse gases (CH4, N2O, CO2), with highest levels in rivers draining rainforest. The high diversity observed underscores the importance of sampling that covers the variability in subcatchment characteristics, to improve our understanding of biogeochemical cycling in the Congo Basin.AFRIVAL: ‘‘African river basins: catchment-scale carbon fluxes and transformations’

    Globally significant greenhouse-gas emissions from African inland waters

    No full text
    Carbon dioxide emissions to the atmosphere from inland waters-streams, rivers, lakes and reservoirs-are nearly equivalent to ocean and land sinks globally. Inland waters can be an important source of methane and nitrous oxide emissions as well, but emissions are poorly quantified, especially in Africa. Here we report dissolved carbon dioxide, methane and nitrous oxide concentrations from 12 rivers in sub-Saharan Africa, including seasonally resolved sampling at 39 sites, acquired between 2006 and 2014. Fluxes were calculated from published gas transfer velocities, and upscaled to the area of all sub-Saharan African rivers using available spatial data sets. Carbon dioxide-equivalent emissions from river channels alone were about 0.4 Pg carbon per year, equivalent to two-thirds of the overall net carbon land sink previously reported for Africa. Including emissions from wetlands of the Congo river increases the total carbon dioxide-equivalent greenhouse-gas emissions to about 0.9 Pg carbon per year, equivalent to about one quarter of the global ocean and terrestrial combined carbon sink. Riverine carbon dioxide and methane emissions increase with wetland extent and upland biomass. We therefore suggest that future changes in wetland and upland cover could strongly affect greenhouse-gas emissions from African inland waters

    Spatio-temporal variability and controls on methane and nitrous oxide in the Guadalquivir Estuary, Southwestern Europe

    No full text
    Estuaries are significant methane (CH4) and nitrous oxide (N2O) emitters, although dynamics of both greenhouse gases in these ecosystems are regulated by complex processes. In this work, we aimed at characterizing the spatio-temporal distribution of CH4 and N2O in the Guadalquivir river estuary (SW Spain), the southernmost European estuary. During eight sampling cruises conducted between 2016 and 2017, surface water CH4 and N2O concentrations were measured along the salinity gradient of the estuary by using static-head space equilibration gas chromatography. The CH4 and N2O saturation ranges over the estuarine transect were 520–30,800% (average 2285%) and 40–390% (average 183%), respectively and air–water fluxes ranged from 13 to 1000 µmol m− 2 day− 1(average 66.2 µmol m− 2 day− 1) for CH4 and from − 7 to 35 µmol m− 2 day− 1 (average 8.5 µmol m− 2 day− 1) for N2O. A slight increase in the emissions was detected upstream and no seasonal trends were observed. Mixing between freshwater and oceanic waters influenced biogeochemistry of estuarine waters, affecting CH4 and N2O fluxes. In order to identify potential sources of CH4 and N2O, biogeochemical parameters involved in the formation pathways of both gases, such as salinity, dissolved oxygen, nutrients and organic matter were analyzed. Results suggested that sulfate inhibition and microbial oxidation played a relevant role in dissolved CH4 accumulation in the water column whereas associations found between N2O, nitrate and oxygen indicated that nitrification was a major source of this gas. Therefore, the influence of the tidal-fluvial interaction on ecosystem metabolism regulates trace gas dynamics in the Guadalquivir estuary.This research was funded by the project 1539/2015 from the Spanish Ministry for Agriculture, Food and Environment.Peer reviewe
    corecore