12 research outputs found

    Regulation of polarised growth in fungi

    Get PDF
    Polarised growth in fungi occurs through the delivery of secretory vesicles along tracks formed by cytoskeletal elements to specific sites on the cell surface where they dock with a multiprotein structure called the exocyst before fusing with the plasmamembrane. The budding yeast, Saccharomyces cerevisiae has provided a useful model to investigate the mechanisms involved and their control. Cortical markers, provided by bud site selection pathways during budding, the septin ring during cytokinesis or the stimulation of the pheromone response receptors during mating, act through upstream signalling pathways to localise Cdc24, the GEF for the rho family GTPase, Cdc42. Cdc42 in its GTP-bound activates a multiprotein protein complex called the polarisome which nucleates actin cables along which the secretory vesicles are transported to the cell surface. Hyphae can elongate at a rate orders of magnitude faster than the extension of a yeast bud, so understanding hyphal growth will require substantial modification of the yeast paradigm. The rapid rate of hyphal growth is driven by a structure called the Spitzenkörper, located just behind the growing tip and which is rich in secretory vesicles. It is thought that secretory vesicles are delivered to the apical region where they accumulate in the Spitzenkörper. The Spitzenkörper then acts as vesicle supply centre in which vesicles exit the Spitzenkörper in all directions, but because of its proximity, the tip receives a greater concentration of vesicles per unit area than subapical regions. There are no obvious equivalents to the bud site selection pathway to provide a spatial landmark for polarised growth in hyphae. However, an emerging model is the way that the site of polarised growth in the fission yeast, Schizosaccharomyces pombe, is marked by delivery of the kelch repeat protein, Tea1, along microtubules. The relationship of the Spitzenkörper to the polarisome and the mechanisms that promote its formation are key questions that form the focus of current research

    MHO1, an Evolutionarily Conserved Gene, Is Synthetic Lethal with PLC1; Mho1p Has a Role in Invasive Growth

    Get PDF
    The novel protein Memo (Mediator of ErbB2 driven cell motility) was identified in a screen for ErbB2 interacting proteins and found to have an essential function in cell motility. Memo is evolutionarily conserved with homologs found in all branches of life; the human and yeast proteins have a similarity of >50%. In the present study we used the model organism S. cerevisiae to characterize the Memo-homologue Mho1 (Yjr008wp) and to investigate its function in yeast. In a synthetic lethal screen we found MHO1 as a novel synthetic lethal partner of PLC1, which encodes the single phospholipase C in yeast. Double-deleted cells lacking MHO1 and PLC1, proliferate for up to ten generations. Introduction of human Memo into the memoΔplc1Δ strain rescued the synthetic lethal phenotype suggesting that yeast and human proteins have similar functions. Mho1 is present in the cytoplasm and the nucleus of yeast cells; the same distribution of Memo was found in mammalian cells. None of the Memo homologues have a characteristic nuclear localization sequence, however, a conserved nuclear export sequence is found in all. In mammalian cells, blocking nuclear export with Leptomycin B led to nuclear Memo accumulation, suggesting that it is actively exported from the nucleus. In yeast MHO1 expression is induced by stress conditions. Since invasive growth in S. cerevisiea is also stress-induced, we tested Mho1's role in this response. MHO1 deletion had no effect on invasion induced by nutrient deprivation, however, Mho1 overexpression blocked the invasive ability of yeast cells, suggesting that Mho1 might be acting in a dominant negative manner. Taken together, our results show that MHO1 is a novel synthetic lethal interactor with PLC1, and that both gene products are required for proliferation. Moreover, a role for Memo in cell motility/invasion appears to be conserved across species

    A PAK-like protein kinase is required for maturation of young hyphae and septation in the filamentous ascomycete Ashbya gossypii

    No full text
    Filamentous fungi grow by hyphal extension, which is an extreme example of polarized growth. In contrast to yeast species, where polarized growth of the tip of an emerging bud is temporally limited, filamentous fungi exhibit constitutive polarized growth of the hyphal tip. In many fungi, including Ashbya gossypii, polarized growth is reinforced by a process called hyphal maturation. Hyphal maturation refers to the developmental switch from slow-growing hyphae of young mycelium to fast-growing hyphae of mature mycelium. This process is essential for efficient expansion of mycelium. We report for the first time on the identification and characterization of a fungal gene important for hyphal maturation. This novel A. gossypii gene encodes a presumptive PAK (p21-activated kinase)-like kinase. Its closest homolog is the S. cerevisiae Cla4 protein kinase; the A. gossypii protein is therefore called AgCla4p. Agcla4 deletion strains are no longer able to perform the developmental switch from young to mature hyphae, and GFP (green fluorescent protein)-tagged AgCla4p localizes with much higher frequency in mature hyphal tips than in young hyphal tips. Both results support the importance of AgCla4p in hyphal maturation. AgCla4p is also required for septation, indicated by the inability of Agcla4 deletion strains to properly form actin rings and chitin rings. Despite the requirement of AgCla4p for the development of fast-growing hyphae, AgCla4p is not necessary for actin polarization per se, because tips enriched in cortical patches and hyphae with a fully developed network of actin cables can be seen in Agcla4 deletion strains. The possibility that AgCla4p may be involved in regulatory mechanisms that control the dynamics of the actin patches and/or actin cables is discussed

    Effect of highly branched hyphal morphology on the enhanced production of cellulase in Trichoderma reesei DES-15

    No full text
    The morphology of Trichoderma reesei is a vitally important factor for cellulase productivity. This study investigated the effect of hyphal morphology on cellulase production in the hyper-cellulolytic mutant, T. reesei DES-15. With a distinct morphology, T. reesei DES-15 was obtained through Diethyl sulfite (DES) mutagenesis. The hyphal morphology of DES-15 batch-cultured in a 5-L fermentor was significantly shorter and more branched than the parental strain RUT C30. The cellulase production of DES-15 during batch fermentation was 66 % greater than that of RUT C30 when cultured the same conditions. DES-15 secreted nearly 50 % more protein than RUT C30. The gene expression level of a set of genes (cla4, spa2, ras2, ras1, rhoA, cdc42, and racA) known to be involved in hyphae growth and hyphal branching was measured by quantitative real-time PCR. The transcriptional analysis of these genes demonstrated that a decrease in gene expressions might contribute to the increased hyphal branching seen in DES-15. These results indicated that the highly branching hyphae in DES-15 resulted in increased cellulase production, suggesting that DES-15 may be a good candidate for use in the large-scale production of cellulase. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13205-016-0516-5) contains supplementary material, which is available to authorized users

    Regulation of exit from mitosis in multinucleate Ashbya gossypii cells relies on a minimal network of genes

    No full text
    Homologues of all components of the Saccharomyces cerevisiae FEAR and MEN pathways are expressed in the multinucleated hyphae of Ashbya gossypii despite the lack of controlled nuclear positioning and mitosis-dependent septum formation. In this system, MEN loses its dominant role, and nuclear divisions are controlled by FEAR homologues

    Regulation of Distinct Septin Rings in a Single Cell by Elm1p and Gin4p Kinases

    Get PDF
    Septins are conserved, GTP-binding proteins that assemble into higher order structures, including filaments and rings with varied cellular functions. Using four-dimensional quantitative fluorescence microscopy of Ashbya gossypii fungal cells, we show that septins can assemble into morphologically distinct classes of rings that vary in dimensions, intensities, and positions within a single cell. Notably, these different classes coexist and persist for extended times, similar in appearance and behavior to septins in mammalian neurons and cultured cells. We demonstrate that new septin proteins can add through time to assembled rings, indicating that septins may continue to polymerize during ring maturation. Different classes of rings do not arise from the presence or absence of specific septin subunits and ring maintenance does not require the actin and microtubule cytoskeletons. Instead, morphological and behavioral differences in the rings require the Elm1p and Gin4p kinases. This work demonstrates that distinct higher order septin structures form within one cell because of the action of specific kinases
    corecore