283 research outputs found

    Using Anthropogenic Risks to Inform Salmonid Conservation at the Landscape Scale

    Get PDF
    The expansion and industrialization of humanity has caused many unforeseen consequences to the natural world. Due to the importance of freshwater for people, rivers have been particularly altered to meet human needs, often at the expense of the natural world. Supplying water for farms, industries, and cities has reshaped the natural state of rivers by altering river paths, chemistry, and species compositions. These changes have harmed many species that prospered before widespread human alterations, including the native trout and salmon of western North America. As human populations continue to grow, new threats will surface for rivers, and the trout and salmon that call rivers home. As a result, many scientists have considered how to assess and counter-act threats to trout and salmon. Often, efforts focus around rehabilitating stretches of river, but do not consider large-scale watershed conditions,which may be responsible for chronic stream degradation. Tools have been developed to guide decision making for coordinating conservation efforts that consider the multitude of risks facing trout and salmon. In this thesis I implemented these tools to help managers and decision makers understand how risks affect their conservation efforts. Two examples are provided, with the first considering development and resource extraction risks to Pacific salmon spawning habitat in Alaska. The second example considers climate, development, and competition risks for cutthroat trout, throughout Utah. Results from both examples clarify that managers who consider risks while conducting conservation yield greater results than managers who attempt to avoid risks. The findings here intend to inform future conservation effort for trout and salmon, and also clarify the importance of risk management in conservation

    Using Systematic Conservation Planning to Establish Management Priorities for Freshwater Salmon Conservation, Matanuska-Susitna Basin, AK, USA

    Get PDF
    1- The Alaskan Matanuska-Susitna Basin (MSB) provides habitat for all five Pacific salmon species, and their large seasonal spawning runs are important both ecologically and economically. However, the encroachment of human development through urbanization and extractive industries poses a serious risk to salmon habitat in the MSB. 2- Using systematic conservation planning techniques, different methods of incorporating anthropogenic risks were assessed to determine how to cost-effectively conserve salmon habitat in the area. 3- The consequences of four distinct conservation scenarios were quantified: no consideration of either urbanization or extractive industries (‘Risk ignored’ scenario); accounting for the risk of urbanization, and avoiding conservation in all fossil fuel rich areas (‘Urbanization accounted, all extraction avoided’ scenario); accounting for urbanization and oil and gas development, but avoiding conservation in coal rich areas (‘Urbanization accounted, coal areas avoided’ scenario); and accounting for all anthropogenic risks to habitat, and allowing conservation in oil, gas, or coal rich areas (‘All risks accounted’ scenario). To compare conservation success and resiliency, the impact of these risks were estimated using Monte Carlo simulations. The final cost of each solution was then divided by the number of conservation targets met to determine a return on investment. 4- Results from scenarios that avoided all extractive activities, or just coal, suggest that conservation targets cannot be met by simply avoiding fossil fuel rich areas, and these scenarios resulted in lower returns on investment than when risks from extraction were incorporated into the solution. 5- By providing economically rooted conservation prioritization, this study provides a method for local managers and conservation groups to identify conservation opportunities in MSB river basins

    Global Patterns in Marine Sediment Carbon Stocks

    Get PDF
    To develop more accurate global carbon (C) budgets and to better inform management of human activities in the ocean, we need high-resolution estimates of marine C stocks. Here we quantify global marine sedimentary C stocks at a 1-km resolution, and find that marine sediments store ∌ 3117 (3006–3209) Pg C in the top 1 m (more than twice that of terrestrial soils). Sediments in abyss/basin zones account for 75% of the global marine sediment C stock, and 52% of that stock is within the 200-mile Exclusive Economic Zones of countries. Currently, only ∌2% of sediment C stocks are located in highly to fully protected areas that prevent the disturbance of the seafloor. Our results show that marine sediments represent a large and globally important C sink. However, the lack of protection for marine C stocks makes them highly vulnerable to human disturbances that can lead to their remineralization to CO2, further aggravating climate change impacts

    Ultraviolet Imaging of the Globular Cluster 47 Tucanae

    Get PDF
    We have used the Ultraviolet Imaging Telescope to obtain deep far-UV (1620 Angstrom), 40' diameter images of the prototypical metal-rich globular cluster 47 Tucanae. We find a population of about 20 hot (Teff > 9000 K) objects near or above the predicted UV luminosity of the hot horizontal branch (HB) and lying within two half-light radii of the cluster center. We believe these are normal hot HB or post-HB objects rather than interacting binaries or blue stragglers. IUE spectra of two are consistent with post-HB phases. These observations, and recent HST photometry of two other metal-rich clusters, demonstrate that populations with rich, cool HB's can nonetheless produce hot HB and post-HB stars. The cluster center also contains an unusual diffuse far-UV source which is more extended than its V-band light. It is possible that this is associated with an intracluster medium, for which there was earlier infrared and X-ray evidence, and is produced by C IV emission or scattered light from grains.Comment: 13 pages AASLaTeX including one postscript figure and one bitmapped image, JPEG format. Submitted to the Astronomical Jorunal. Full Postscript version available at http://www.astro.virginia.edu/~bd4r

    Reliable Identification of Binary Supermassive Black Holes from Rubin Observatory Time-Domain Monitoring

    Full text link
    Periodic signatures in time-domain observations of quasars have been used to search for binary supermassive black holes. These searches, across existing time-domain surveys, have produced several hundred candidates. The general stochastic variability of quasars, however, can masquerade as a false-positive periodic signal, especially when monitoring cadence and duration are limited. In this work, we predict the detectability of binary supermassive black holes in the upcoming Rubin Observatory Legacy Survey of Space and Time (LSST). We apply computationally inexpensive sinusoidal curve fits to millions of simulated LSST Deep Drilling Field light curves of both single, isolated quasars and binary quasars. Period and phase of simulated binary signals can generally be disentangled from quasar variability. Binary amplitude is overestimated and poorly recovered for two-thirds of potential binaries due to quasar accretion variability. Quasars with strong intrinsic variability can obscure a binary signal too much for recovery. We also find that the most luminous quasars mimic current binary candidate light curves and their properties: false positive rates are 60\% for these quasars. The reliable recovery of binary period and phase for a wide range of input binary LSST light curves is promising for multi-messenger characterization of binary supermassive black holes. However, pure electromagnetic detections of binaries using photometric periodicity with amplitude greater than 0.1 magnitude will result in samples that are overwhelmed by false positives. This paper represents an important and computationally inexpensive way forward for understanding the true and false positive rates for binary candidates identified by Rubin.Comment: 21 pages, 14 figures, 3 table

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M⊙(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    Applications of Microlensing to Stellar Astrophysics

    Full text link
    Over the past decade, microlensing has developed into a powerful tool to study stellar astrophysics, especially stellar atmospheres, stellar masses, and binarity. I review this progress. Stellar atmospheres can be probed whenever the source in a microlensing event passes over the caustic (contour of infinite magnification) induced by the lens because the caustic effectively resolves the source. Broad-band observations of four events have yielded limb-darkening measurements, which in essence map the atmospheric temperature as a function of depth. And now, for the first time, spectroscopic observations of one event promise much richer diagnostics of the source atmosphere. In the past two years, a practical method has finally been developed to systematically measure the lens masses in microlensing events. This will permit a census of all massive objects, both dark and luminous, in the Galactic bulge, including low-mass stars, brown dwarfs, white dwarfs, neutron stars, and black holes. The method combines traditional ground-based photometry with astrometric and photometric measurements by the Space Interferometry Mission (SIM) in solar orbit. Using a related technique SIM can also obtain accurate (>~ 1%) mass measurement of a dozen or so nearby stars, thus enabling precision tests of stellar models. Binary lenses can give rise to dramatic and easily detectable microlensing signatures, even for large mass ratios. This makes microlensing a potentially powerful probe of the companion mass distribution, especially in the Galactic bulge where this function is difficult to probe by other techniques.Comment: PASP Invited Review, in press (August 2001). 33 pages including 5 fig

    Altered Risk-Based Decision Making following Adolescent Alcohol Use Results from an Imbalance in Reinforcement Learning in Rats

    Get PDF
    Alcohol use during adolescence has profound and enduring consequences on decision-making under risk. However, the fundamental psychological processes underlying these changes are unknown. Here, we show that alcohol use produces over-fast learning for better-than-expected, but not worse-than-expected, outcomes without altering subjective reward valuation. We constructed a simple reinforcement learning model to simulate altered decision making using behavioral parameters extracted from rats with a history of adolescent alcohol use. Remarkably, the learning imbalance alone was sufficient to simulate the divergence in choice behavior observed between these groups of animals. These findings identify a selective alteration in reinforcement learning following adolescent alcohol use that can account for a robust change in risk-based decision making persisting into later life

    Ancient DNA suggests modern wolves trace their origin to a late Pleistocene expansion from Beringia.

    Get PDF
    Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that have maintained a wide geographic distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single late Pleistocene population. Both the geographic origin of this ancestral population and how it became widespread remain unknown. Here, we used a spatially and temporally explicit modelling framework to analyse a dataset of 90 modern and 45 ancient mitochondrial wolf genomes from across the Northern Hemisphere, spanning the last 50,000 years. Our results suggest that contemporary wolf populations trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum, and that this process was most likely driven by Late Pleistocene ecological fluctuations that occurred across the Northern Hemisphere. This study provides direct ancient genetic evidence that long-range migration has played an important role in the population history of a large carnivore, and provides an insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog.L.L., K.D. and G.L. were supported by the Natural Environment Research Council, UK (grant numbers NE/K005243/1, NE/K003259/1); LL was also supported by the European Research Council grant (339941‐ADAPT); A.M. and A.E. were supported by the European Research Council Consolidator grant (grant number 647787‐LocalAdaptation); L.F. and G.L. were supported by the European Research Council grant (ERC‐2013‐StG 337574‐UNDEAD); T.G. was supported by a European Research Council Consolidator grant (681396‐Extinction Genomics) & Lundbeck Foundation grant (R52‐5062); O.T. was supported by the National Science Center, Poland (2015/19/P/NZ7/03971), with funding from EU's Horizon 2020 programme under the Marie SkƂodowska‐Curie grant agreement (665778) and Synthesys Project (BETAF 3062); V.P., E.P. and P.N. were supported by the Russian Science Foundation grant (N16‐18‐10265 RNF); A.P. was supported by the Max Planck Society; M.L‐G. was supported by a Czech Science Foundation grant (GAČR15‐06446S)
    • 

    corecore