395 research outputs found

    Poisson-event-based analysis of cell proliferation.

    Get PDF
    A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture

    Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids

    Get PDF
    AbstractThe assembly of the tegument of herpes simplex virus type 1 (HSV-1) is a complex process that involves a number of events at various sites within virus-infected cells. Our studies focused on determining whether tegument proteins, VP1/2 and UL37, are added to capsids located within the nucleus. Capsids were isolated from the nuclear fraction of HSV-1-infected cells and purified by rate-zonal centrifugation to separate B capsids (containing the scaffold proteins and no viral DNA) and C capsids (containing DNA and no scaffold proteins). Western blot analyses of these capsids indicated that VP1/2 associated primarily with C capsids and UL37 associated with B and C capsids. The results demonstrate that at least two of the tegument proteins of HSV-1 are associated with capsids isolated from the nuclear fraction, and these capsid–tegument protein interactions may represent initial events of the tegumentation process

    Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension

    Get PDF
    BACKGROUND: Beyond their role as innate immune effectors, natural killer (NK) cells are emerging as important regulators of angiogenesis and vascular remodeling. Pulmonary arterial hypertension (PAH) is characterized by severe pulmonary vascular remodeling and has long been associated with immune dysfunction. Despite this association, a role for NK cells in disease pathology has not yet been described. METHODS AND RESULTS: Analysis of whole blood lymphocytes and isolated NK cells from PAH patients revealed an expansion of the functionally defective CD56(-)/CD16(+) NK subset that was not observed in patients with chronic thromboembolic pulmonary hypertension. NK cells from PAH patients also displayed decreased levels of the activating receptor NKp46 and the killer immunoglobulin-like receptors 2DL1/S1 and 3DL1, reduced secretion of the cytokine macrophage inflammatory protein-1β, and a significant impairment in cytolytic function associated with decreased killer immunoglobulin-like receptor 3DL1 expression. Genotyping patients (n=222) and controls (n=191) for killer immunoglobulin-like receptor gene polymorphisms did not explain these observations. Rather, we show that NK cells from PAH patients exhibit increased responsiveness to transforming growth factor-β, which specifically downregulates disease-associated killer immunoglobulin-like receptors. NK cell number and cytotoxicity were similarly decreased in the monocrotaline rat and chronic hypoxia mouse models of PAH, accompanied by reduced production of interferon-γ in NK cells from hypoxic mice. NK cells from PAH patients also produced elevated quantities of matrix metalloproteinase 9, consistent with a capacity to influence vascular remodeling. CONCLUSIONS: Our work is the first to identify an impairment of NK cells in PAH and suggests a novel and substantive role for innate immunity in the pathobiology of this disease

    Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity

    Get PDF
    The Publisher's final version can be found by following the DOI link. open access articleWith the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity

    Interactive effect of STAT6 and IL13 gene polymorphisms on eczema status: results from a longitudinal and a cross-sectional study

    Get PDF
    BACKGROUND: Eczema is a prevalent skin disease that is mainly characterized by systemic deviation of immune response and defective epidermal barrier. Th2 cytokines, such as IL-13, and transcription factor STAT6 are key elements in the inflammatory response that characterize allergic disorders, including eczema. Previous genetic association studies showed inconsistent results for the association of single nucleotide polymorphisms (SNPs) with eczema. Our aim was to investigate whether SNPs in IL13 and STAT6 genes, which share a biological pathway, have an interactive effect on eczema risk.METHODS: Data from two independent population-based studies were analyzed, namely the Isle of Wight birth cohort study (IOW; n = 1,456) and for the purpose of replication the Swansea PAPA (Poblogaeth Asthma Prifysgol Abertawe; n = 1,445) cross-sectional study. Log-binomial regressions were applied to (i) account for the interaction between IL13 (rs20541) and STAT6 (rs1059513) polymorphisms and (ii) estimate the combined effect, in terms of risk ratios (RRs), of both risk factors on the risk of eczema.RESULTS: Under a dominant genetic model, the interaction term [IL13 (rs20541) x STAT6 (rs1059513)] was statistically significant in both studies (IOW: adjusted Pinteraction = 0.046; PAPA: Pinteraction = 0.037). The assessment of the combined effect associated with having risk genotypes in both SNPs yielded a 1.52-fold increased risk of eczema in the IOW study (95% confidence interval (CI): 1.05 -- 2.20; P = 0.028) and a 2.01-fold higher risk of eczema (95% CI: 1.29 -- 3.12; P = 0.002) in the PAPA study population.CONCLUSIONS: Our study adds to the current knowledge of genetic susceptibility by demonstrating for the first time an interactive effect between SNPs in IL13 (rs20541) and STAT6 (rs1059513) on the occurrence of eczema in two independent samples. Findings of this report further support the emerging evidence that points toward the existence of genetic effects that occur via complex networks involving gene-gene interactions (epistasis)

    Image-Based Cell Profiling Enables Quantitative Tissue Microscopy in Gastroenterology.

    Get PDF
    Immunofluorescence microscopy is an essential tool for tissue-based research, yet data reporting is almost always qualitative. Quantification of images, at the per-cell level, enables "flow cytometry-type" analyses with intact locational data but achieving this is complex. Gastrointestinal tissue, for example, is highly diverse: from mixed-cell epithelial layers through to discrete lymphoid patches. Moreover, different species (e.g., rat, mouse, and humans) and tissue preparations (paraffin/frozen) are all commonly studied. Here, using field-relevant examples, we develop open, user-friendly methodology that can encompass these variables to provide quantitative tissue microscopy for the field. Antibody-independent cell labeling approaches, compatible across preparation types and species, were optimized. Per-cell data were extracted from routine confocal micrographs, with semantic machine learning employed to tackle densely packed lymphoid tissues. Data analysis was achieved by flow cytometry-type analyses alongside visualization and statistical definition of cell locations, interactions and established microenvironments. First, quantification of Escherichia coli passage into human small bowel tissue, following Ussing chamber incubations exemplified objective quantification of rare events in the context of lumen-tissue crosstalk. Second, in rat jejenum, precise histological context revealed distinct populations of intraepithelial lymphocytes between and directly below enterocytes enabling quantification in context of total epithelial cell numbers. Finally, mouse mononuclear phagocyte-T cell interactions, cell expression and significant spatial cell congregations were mapped to shed light on cell-cell communication in lymphoid Peyer's patch. Accessible, quantitative tissue microscopy provides a new window-of-insight to diverse questions in gastroenterology. It can also help combat some of the data reproducibility crisis associated with antibody technologies and over-reliance on qualitative microscopy. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.UK Medical Research Council (grant number MR/R005699/1) UK Engineering and Physical Sciences Research Council (grant EP/H008683/1) UK Biotechnology and Biological Sciences Research Council (grant number BB/P026818/1

    Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity.

    Get PDF
    With the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity

    Assessment of Diversity of Antimicrobial Resistance Phenotypes and Genotypes of \u3ci\u3eMannheimia haemolytica\u3c/i\u3e Isolates from Bovine Nasopharyngeal Swabs

    Get PDF
    The threat of bovine respiratory disease (BRD) for cattle operations is exacerbated by increasing prevalence of antimicrobial resistance (AMR) in Mannheimia haemolytica, a leading cause of BRD. Characterization of AMR in M. haemolytica by culture and susceptibility testing is complicated by uncertainty regarding the number of colonies that must be selected to accurately characterize AMR phenotypes (antibiograms) and genotypes in a culture. The study objective was to assess phenotypic and genotypic diversity of M. haemolytica isolates on nasopharyngeal swabs (NPS) from 28 cattle at risk for BRD or with BRD. NPS were swabbed onto five consecutive blood agar plates; after incubation up to 20 M. haemolytica colonies were selected per plate (up to 100 colonies per NPS). Phenotype was determined by measuring minimum inhibitory concentrations (MIC) for 11 antimicrobials and classifying isolates as resistant or not. Genotype was indirectly determined by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS). NPS from 11 of 28 cattle yielded at least one M. haemolytica isolate; median (range) of isolates per NPS was 48 (1–94). NPS from seven cattle yielded one phenotype, 3 NPS yielded two, and 1 NPS yielded three; however, within a sample all phenotypic differences were due to only oneMIC dilution. On each NPS all M. haemolytica isolated were the same genotype; genotype 1 was isolated from three NPS and genotype two was isolated from eight. Diversity of M. haemolytica on bovine NPS was limited, suggesting that selection of few colonies might adequately identify relevant phenotypes and genotypes

    Targeting the latent human cytomegalovirus reservoir for T-cell-mediated killing with virus-specific nanobodies.

    Get PDF
    Funder: Department of HealthLatent human cytomegalovirus (HCMV) infection is characterized by limited gene expression, making latent HCMV infections refractory to current treatments targeting viral replication. However, reactivation of latent HCMV in immunosuppressed solid organ and stem cell transplant patients often results in morbidity. Here, we report the killing of latently infected cells via a virus-specific nanobody (VUN100bv) that partially inhibits signaling of the viral receptor US28. VUN100bv reactivates immediate early gene expression in latently infected cells without inducing virus production. This allows recognition and killing of latently infected monocytes by autologous cytotoxic T lymphocytes from HCMV-seropositive individuals, which could serve as a therapy to reduce the HCMV latent reservoir of transplant patients
    corecore