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� Abstract
A protocol for the assessment of cell proliferation dynamics is presented. This is based
on the measurement of cell division events and their subsequent analysis using Poisson
probability statistics. Detailed analysis of proliferation dynamics in heterogeneous popu-
lations requires single cell resolution within a time series analysis and so is technically
demanding to implement. Here, we show that by focusing on the events during which
cells undergo division rather than directly on the cells themselves a simplified image
acquisition and analysis protocol can be followed, which maintains single cell resolution
and reports on the key metrics of cell proliferation. The technique is demonstrated using
a microscope with 1.3 lm spatial resolution to track mitotic events within A549 and
BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright
field images using standard algorithms within the ImageJ software toolkit yielded 87%
accurate recording of the manually identified, temporal, and spatial positions of the
mitotic event series. Analysis of the statistics of the interevent times (i.e., times between
observed mitoses in a field of view) showed that cell division conformed to a nonhomo-
geneous Poisson process in which the rate of occurrence of mitotic events, k exponen-
tially increased over time and provided values of the mean inter mitotic time of
21.1 6 1.2 hours for the A549 cells and 25.0 6 1.1 h for the BEAS-2B cells. Comparison
of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson
statistics indicated that temporal synchronisation of the cell division process was occur-
ring within 70% of the population and that this could be increased to 85% through
serum starvation of the cell culture. VC 2015 The Authors. Published by Wiley Periodicals, Inc. This is

an open access article under the terms of the Creative Commons Attribution License, which permits use, distribu-

tion and reproduction in any medium, provided the original work is properly cited.

� Key terms
Key terms: cell proliferation; mitosis; poisson distribution; computer-assisted image
analysis; microscopy; correlation studies

The study of cell proliferation is a staple cytometry technique which reports on the

fundamental biology of the cell cycle and is a key indicator in pharmacological and

toxicological assays (1). The processes of cell growth and division within heterogene-

ous populations can produce complex population dynamics (2–4). Thus, accurate,

quantitative analyses of cell proliferation, which take full account of spatial and tem-

poral variation of distinct population subgroups, are challenging. Methods for assess-

ing cell proliferation can be organized according to their analytical complexity with

the simplest approach being counts of total cell number and the most sophisticated

providing complete tracking of cellular state and position through time-lapse imaging.

Population level measures such as total cell mass or cell count provide relatively

straightforward analyses of proliferation but are ultimately limited as they report on

the outcome of biological processes (i.e., population size) rather than the processes

themselves (5). They are also predominantly implemented as an end point assay and

are thus limited to a single time point. At the other end of the spectrum, time lapse

microscopy, and computational image processing provides full quantification of

Systems and Process Engineering
Centre, College of Engineering, Swansea
University, Singleton Park, Swansea SA2
8PP, United Kingdom

Received 9 August 2014; Revised 9
December 2014; Accepted 12 December
2014

Grant sponsor: UK Engineering and Phys-
ical Sciences Research Council; Grant
number: EP/H008683/1.

Additional Supporting Information may be
found in the online version of this article.

*Correspondence to: Huw D. Summers,
Systems and Process Engineering
Centre, College of Engineering, Swansea
University, Singleton Park, Swansea SA2
8PP, United Kingdom. E-mail:
h.d.summers@swansea.ac.uk

Published online 8 January 2015 in Wiley
Online Library (wileyonlinelibrary.com)

DOI: 10.1002/cyto.a.22620

VC 2015 The Authors. Published by Wiley
Periodicals, Inc.

Cytometry Part A � 87A: 385�392, 2015

Original Article



individual cells in space and time; however it is expensive to

implement and requires a high level of experience and exper-

tise (6). Between these extremes lies a collection of flow

cytometry techniques which provide cell cycle or generational

information through measurement of fluorescent molecular

reporters (7–10). These are implemented at the single cell level

and so capture population heterogeneity, but they cannot capture

the inter-relations of cells in space and time as they are imple-

mented as end point assays of randomized cell suspensions.

In this article, we present a microscopy technique in

which time lapse imaging is used to identify division events as

opposed to directly tracking the cells. This provides a measure

of cell proliferation based on recognition of the binary divi-

sion process and so economises the measurement task by only

collecting information at those critical time points within the

cell life cycle at which mitosis drives population growth. The

technique therefore provides single cell resolution and map-

ping of spatiotemporal events but in a simplified implementa-

tion where image processing is made relatively straightforward

by the single requirement to recognize mitotic cells; that is,

cells only need to be identified when in a high image-contrast

mode as they lift off the growth surface and become spherical,

prior to a division event. It is the measurement of an event

sequence that is of primary importance here, as this provides

data on the occurrence rate, k of events and the intervals, Dt,

Dx, and Dy between them. Comparison can then be made to

the expected values, as described by Poisson statistics (11).

Agreement of the data with a predicted Poisson event series

indicates that the underlying principles of this statistical pro-

cess, namely random occurrence of events with no correlation

to previous instances, are consistent with the observed behav-

ior of the biological system. The technique therefore indicates

whether there is spatial or temporal synchronicity within the

cell population (12). Fitting of the intermitotic times accord-

ing to Poisson statistics also provides a measure of the mean

rate of event occurrence and the associated mean rate of cell

growth, c. Thus, the inter-mitotic time can be quantified with-

out the need to track individual cells from the point of their

birth through to the creation of daughter cells.

We implement the technique using a JuLITM microscope

(NanoEn Tek, Seoul, Korea). This machine is designed to sit

within a standard cell culture incubator and provides auto-

mated image acquisition over an extended period at user

defined times. Its performance is of relatively low specifica-

tion, with an optical resolution of just 1.3 lm. However, this

is more than sufficient to detect mitotic cells and our results

demonstrate how the low-level demands of the Poisson analy-

sis on the optics of the instrument allow a robust and detailed

assessment of cell population proliferation dynamics.

MATERIALS AND METHODS

In-Vitro Cell Culture

Normal lung (BEAS-2B) and lung carcinoma (A549) cell

lines were purchased from ATCCVR (product numbers CRL-

9609 and CLL-185, respectively). Cultures were established

under standard conditions (37 �C, 5% CO2, 95% humidity)

in a growth medium consisting of glutamine containing Dul-

becco’s Modified Eagle’s Medium (DMEM; D5796, Sigma-

Aldrich, UK), supplemented with 10% foetal bovine serum

(FBS; 10270–106, Life Technologies, UK), 1% penicillin/strep-

tomycin (15240–062, Life Technologies, UK). Prior to the ini-

tiation of experiments cultures were maintained for at least

72 h at �75% confluency by routine subculturing involving

trypsinization (25300–054, Life Technologies, UK), centrifu-

gation (185g, 5 min) and re-seeding in T75 culture flasks

(658175, Greiner Bio-One, UK). For time-lapse microscopy

experiments, cell densities were determined using a Z1 series

Coulter Counter and seeded into T25 flasks (690175, Greiner

Bio-One, UK). Cultures were then returned to the incubator

for 12 h to facilitate attachment prior to initiation of imaging.

Cell synchronization was achieved by serum starvation; initi-

ated through replacement of the FBS containing medium with

99% DMEM/1% antibiotics.

Time-Lapse Microscopy and Image Acquisition

Time-lapse microscopy was carried out using a JuLiTM

Smart Fluorescent Cell Analyser automated microscope

(NanoEn Tek, Seoul, Korea) equipped with a 4X objective and

operating under the 203 digital zoom setting. Images were

captured in bright-field mode at 15 min intervals at 640 3

540 pixel resolution, for up to 48 h. During imaging, the port-

able microscope was situated inside the incubator to ensure

optimal conditions for cell growth.

Analysis Using Poisson Statistics

The analysis of cell proliferation is based on the measure-

ment of a series of mitotic events. Consider the average rate at

which mitoses occur, at a point in time that is captured by a

single image frame. This is designated by the symbol, k and is

related to the number of cells present, Ncell (which is in turn

related to the image field size) and the cell population growth

rate, c :

k5cNcell (1)

Ncell ¼ N0ect (2)

Where N0 is the number of cells at t 5 0 and the rate of

cell death is assumed to be negligible in comparison to the

growth rate. Substituting for Ncell gives:

k5cN0ect (3)

The series of mitoses occurring over a given time period

can be viewed as a specific example of a general class known

as Poisson processes. These are characterised by a series of

mitotic events, the occurrence of which is random from event

to event but can be characterised by a constant, average rate of

occurrence, k over longer time scales. For such a Poisson event

series the probability that a given interevent duration will be

greater than the time variable, s is described by:

P Dt > sð Þ ¼ e2s (4)

However, as shown by Eq. (3), in the case of cell prolifer-

ation k is time dependent—as the cell population increases so

will the average number of mitoses per unit time. In cases

where k is time-dependent the event sequence forms a
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nonhomogeneous Poisson series (13). In this case Eq. (4) can-

not be directly applied. However, in general, k (t) will be a

slowly varying function over the time scale of s and so Eq. (4)

will hold over limited time intervals. For the cell mitosis

example we consider, k (t) varies over 24 h timescales whilst

the time interval between observed mitoses, s is typically a few

hours. We can therefore obtain the probability of finding an

interevent spacing, s, anywhere within a measurement period,

t0 by using the average value of k (t) between t 5 0 and t 5 t0,
in Eq. (4).

From Eq. (3) the average rate, K, determined over a mea-

surement period, t’ is:

K ¼ 1

t
0

ðt

0

k tð Þdt ¼ N0

t 0
ect -1½ � (5)

The probability distribution of the interevent duration,

Dt, over a series of duration t0, is thus:

P Dt > sð Þ5e2Ks (6)

Thus K can be determined from the measured mitotic

event series using Eqs. (5) and (6) and used, together with a

count of the cell number in the initial time frame (N0), to

determine the cell growth rate, c. Finally, the intermitotic time,

tIMT can be calculated using the relation, tIMT = ln((2))/c.

RESULTS

Time-Series Analysis

The analysis is based on manual recognition and record-

ing of mitotic events within each time frame to ensure maxi-

mum accuracy. A typical image frame is shown in Figure 1

(N 5 65 cells) and within it the mitotic cells are clearly differ-

entiated as they detach from the surface of the culture well

and round up prior to dividing. The evolving series of these

events forms the starting point of the statistical analysis. A

10 h section of a sequence, measured from the A549 cell line,

is shown in Figure 2A. Two aspects of the division process can

be seen in this image: (i) the interevent times are to some

degree random in length and (ii) there is an overall trend to

an increasing rate of event occurrence with time. This is as

expected, with the stochastic nature of the Poisson process

producing varying time intervals and the deterministic pro-

cess of cell proliferation leading to an ever increasing proba-

bility of the occurrence of a division event within a chosen

time interval. The time dependent division rate translates to a

time varying k term within the event statistics and makes the

process a nonhomogeneous Poisson (see Materials and Meth-

ods). In this case k(t) is of an exponential form and processes

of this nature have been well studied in relation to mortality,

where the conditional probability of the occurrence of death

doubles within a fixed time period (14,15). Here, we see the

same mathematical forms arising from an increasing probabil-

ity of birth rather than death, driven by the growing cell

population. A comparison of the measured interevent

time distribution over a 40 h time period to the statistical pre-

diction, using the nonhomogeneous Poisson formalism [Eqs.

(5)], is shown in Figure 2B. The model accurately describes

the data and indicates a mean intermitotic time, tIMT 5

21.1 6 1.2 h (error bounds correspond to 95% confidence fit

range). The experiment acquisition interval of 15 min sets the

minimum resolution of interevent time and so for time steps

in which multiple mitoses appear in the image, the interevent

times are not specified but merely recorded as having a

Dt< 15 min. The accumulated number of division events is

shown in Figure 2C and increases exponentially as expected.

To validate the tIMT value manual tracking of 34 cells from the

point of birth through to division was undertaken to obtain a

direct observation of the cell cycle time. The histogram of the

measured values is shown in Figure 2D and shows a mean of

20.1 h with standard deviation of 4.2 h; thus the value deter-

mined from the intermitotic time distribution is well within

the directly determined, value range. The results displayed in

Figure 2 confirm one of the key aspects of the Poisson series

analysis—information on the cell proliferation dynamics (i.e.,

tIMT) can be obtained through unreferenced observation of

events, there is no requirement for identification or relation of

cells. In general terms, the cell population is analysed via

monitoring of process rather than components.

Cell Synchronization

The fundamental assumption of Poisson statistics is that

the distribution of event occurrence is random and so syn-

chronisation of cells within their life cycle will lead to a devia-

tion of the measured data set from the model statistics. An

example of this is shown in Figure 3, which shows the event

time-series and accumulated event curve, over a 48 h period,

for the BEAS-2B cell line. Synchronisation of cell cycle pro-

gression readily occurs within this cell line and this exhibits

itself, between the 20 and 30 h time points, as an interval of

sparse events in Figure 3A and a reduced rate of event

Figure 1. A–D: Representative time series, of reduced image field

size, showing a single cell division event imaged at 15 min inter-

vals; (E) full image field with mitotic cells highlighted with over-

laid circles. All images are of BEAS-2B cells seeded at a density of

2 3 105 cells ml21.
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accumulation in Figure 3B. Analysis of the intermitotic time

for the initial exponential growth phase (0–18 h), under the

assumption of complete cell cycle randomization, provides a

tIMT 5 25.0 6 1.1 h and this is within the range indicated by

direct observation of cells through a full cycle (Figs. 4A and

4B). Thus the data is consistent with the situation in which an

initially randomized population becomes partially synchron-

ized during the cell culture, leading to a reduction in event

occurrence between 20 and 30 hours. An estimate of the

degree of synchronisation can be obtained from the data by

fitting under the assumption of a fraction of the population

obeying the nonhomogeneous Poisson behaviour (solid lines

in Fig. 3B). This is implemented by taking a fraction of the

calculated event occurrence over the 20 to 30 hour period

[i.e., a fractional multiplier is applied to Eq. (2)]. The result

indicates that only 30% of the population follows randomized

division during the 20–30 h period, that is, 70% population

synchronisation. We stress that the cycle synchronisation seen

here is inherent to the cell culture process (see Supporting

Information for further examples) and was not deliberately

induced, indeed it was an unexpected aspect of the experi-

ment. The ability to identify and quantify this from basic

image acquisition, undertaken within the culture incubator, is

a major benefit of the Poisson time series technique. Simple

cell counts prior and postincubation would merely indicate a

reduced average growth rate.

Controlled induction of cell cycle synchronisation

through serum starvation (see Materials and Methods)

enhanced the degree of synchronisation within the BEAS-2B

cell line, as shown in Figure 5. Analysis of cell proliferation in

the 48 h following a 72 h serum deprivation period showed a

marked absence of division events from 10 to 20 h following

replenishment of the serum. Fitting of the data using Poisson

time series analysis indicates that 85% of the population were

synchronised in cell cycle. The signature of cell synchronisa-

tion can also be seen, one cell cycle time later, at the 32 h time

point where there is a second region of reduced occurrence of

mitotic events.

Automated Image Analysis

The simplified image processing required for the Poisson

analysis allows ready automation of data acquisition using

bright field images. In the frame, shown in Figure 6A, a num-

ber of mitotic events can be seen in the upper left quadrant of

the image (image from time series for A549 cells shown in

Figs. 2 and 3). These cells are easily identified due to their

Figure 2. A: Time series of division events for an A549 cell culture, seeded at a density of 1.5 3 105 cells ml21. An expanded view of the

first 10 h of a 40 h time-lapse experiment is shown to ensure clear display of events. B: Probability distribution of the interevent time for

all events within the 40 h period (circles – measurement data, solid line – statistical fit). The tIMT value indicated is obtained by a best fit to

the data assuming a nonhomogeneous Poisson process. C: Accumulated count of cell division events (circles) with a model prediction

(dashed line) based on exponential population growth. D: Histogram of measured cell cycle time obtained from manual, frame-by-frame

tracking of 34 cells through their cycle.
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circular morphology, relatively dark shading and evidence of

chromosome alignment across the centre of the cell. The

results of automated detection and masking of these dividing

cells are shown in Figure 6B; this processing was done using

ImageJ software and involved simple image inversion, filtering

and mask selection based on size and circularity (see Support-

ing Information for full details). Running the ImageJ script

for all 160 frames across the 40 h measurement period pro-

vides fully automated acquisition of the mitotic events. These

are shown in Figure 6C together with the manually identified

data set. The automated process successfully identifies 87% of

the mitotic events, a level of accuracy which incurs only a

minor difference in the calculated tIMT, which is calculated to

be 21.6 h from the interevent time series (manual identifica-

tion of events gives tIMT 5 21.1 h).

Application Within a Scratch-Wound Assay

The scratch-wound assay is a common tool for studying

cell migration characteristics (16). In this work we choose the

assay to demonstrate application of the Poisson analysis tech-

nique, within a commonly used protocol, for which temporal

and spatial cell information is important. Note that our aim

here is not to undertake a detailed biological study but rather

to simply show the technique within the context of a specific

assay. BEAS-2B cells were incubated over a 48 h period to

form a confluent layer on the culture dish surface, a pipette

tip was then used to scratch across the surface and so remove

cells from a given area. The cells were then cultured for an

additional 48 h, during which they recolonized the scratched

area. Continuous monitoring of the cell population during

the assay by the JuLI microscope allowed us to analyse the

temporal and spatial correlation of mitoses and to relate these

Figure 3. A: Mitotic event series for BEAS-2B cells seeded at a

density of 1.5 3 105 cells ml21. B: Accumulated count of cell divi-

sion events (circles) with model predictions (solid line) based on

exponential population growth. The model curves assume that

100% of cells undergo unsynchronized division between the 0

and 18 h time points and 30% do so between the 18 and 32 h time

points.

Figure 4. A: probability distribution of the interevent time for

events shown in Figure 3A, occurring between the 0 and 18 h

time points (circles – measurement data, solid line – statistical fit).

The tIMT value indicated is obtained by a best fit to the data

assuming a nonhomogeneous poisson process. B: Histogram of

measured cell cycle time obtained from manual, frame-by-frame

tracking of 44 cells through their cycle.
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measurements to the cell migration that fills the scratch space.

The accumulation of mitotic events over time, prescratch and

postscratch, is shown in Figures 7A and 7B. The data confirms

exponential population growth during the establishment of

the confluent layer with division rates similar to that seen in

other experiments with this cell line. In the 10 h immediately

following creation of the scratch there is again an exponential

growth in the cell number, of a similar magnitude to that seen

prior to the scratch. However, at longer times (10–15 h) there

is a slowdown in the accumulation of mitoses indicating a

reduced rate of population growth. Inspection of the image

set shows that cell migration recolonizes the scratch area

within the 10–12 h time range (Figures 7C–7E). Thus, it

would seem that the slowdown in population growth is linked

to the spatial organisation of the cell colony. Quantitative

assessment of the spatial coordination of cells is also provided

by implementation of the Poisson analysis to a mitotic event

series, but this time the occurrence of mitoses is tracked as a

function of increasing area rather than increasing time. A map

of all the mitoses occurring within the 15 h following the

Figure 5. A: Mitotic event series for BEAS-2B cells seeded at a

density of 1.0 3 105 cells ml21 and serum starved for 72 h prior to

data acquisition. B: Accumulated count of cell division events

(circles) with model predictions (solid line) based on exponential

population growth. The model curves assume that 100% of cells

undergo unsynchronised division between the 0 and 10 h time

points and 15% do so between the 10 and 21 h time points.

Figure 6. A: Representative bright field image of A549 cells, seeded

at a density of 1.5 3 105 cells ml21. B: Mitotic cell identification mask

generated from the image in Figure 6A. C: Plot of location of all divi-

sion events shown in Figure (2)C (open circles – manual identification,

closed circles – automated identification using mitotic cell masks).
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scratch (data in Fig. 7B) is shown in Figure 7F. By applying the

Poisson analysis to this data, we plot the number of accumu-

lated mitotic events as a function of increasing area (Fig. 7G).

The count is taken for events within a circle of increasing

radius, placed at the centre of the image (x 5 400 lm, y 5 350

lm). The dashed line in Figure 7G shows the expected behavior

for a Poisson process: a linear increase in event number with

increasing area according to a mean rate of occurrence, k. The

data shows a substantial deviation from this line for small area,

indicating sparse events, in this case due to the removal of cells

from the center of the analysis area by the scratch. Here, the

general trends shown by the Poisson analysis are unsurprising

as they are predetermined by the specific conditions of the

assay. Nonetheless, the demonstration does show how quantita-

tive information can be obtained on the spatial relationship of

mitotic events, thus allowing discrimination of random cellular

division from synchronised behaviour across a colony.

DISCUSSION

Poisson statistics describe the probability of events within

a stochastic series, providing estimates of their spacing in time

Figure 7. A: Accumulated mitotic events for BEAS-2B cells over a 15 h period prior to a scratch assay. B: Accumulated mitotic events for

the 15 h immediately following creation of a scratch in the cell layer. C–E: Image frames acquired at 0, 10, and 15 h following creation of

the scratch. F: Spatial map of the mitotic events shown in B. The dashed circle indicates the position of the variable area used for counting

of spatial events. G: Spatial accumulation of mitotic events shown in B.
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under the assumption of independence of any given event

from previous instances. The focus on the “event,” that is, the

outcome or visible expression of a process, makes this proba-

bility theory well suited to applications in cell proliferation

studies. The evolution of a cell population is manifest in the

cell division events which drive it and so these provide a meas-

urable descriptor of the population dynamics. The question of

whether cell division is asynchronous in space and time across

a cell colony is also pertinent and so statistical assessment of

the randomness of a sequence of cell division events is a

powerful analytical tool. In addition to providing a mathe-

matical framework for investigation, the Poisson analysis also

simplifies the experiment protocols. The study of cell popula-

tion dynamics proceeds from recognition of cell level events

without need for recognition of the cells as the cell cycle proc-

esses are quantified by the discrete points at which division

occurs rather than continuous monitoring of the whole sys-

tem. The mathematical framework of Poisson statistics is also

flexible and wide-ranging enough to encompass diverse or

altered biology. We show here how an extension to a nonho-

mogeneous Poisson series allows consideration of time vary-

ing processes with the specific example of the exponential

form which is typical of a Gompertz process (14). Other func-

tional dependencies can be readily accommodated by using

the Weibull family of probability distributions which are based

on power law descriptions of the Poisson rate parameter (17).

Spatial inhomogeneity of biological processes, for example,

arising from phenotype variation, can also be accommodated

through the use of compound Poisson distributions such as

the Overdispersed Poisson or the equivalent Negative Bino-

mial distribution (18). In fact these statistical descriptions

have been widely used in biology to describe local nonuni-

formity of a range of ecological species (19–21).

The demonstration of the technique described here pro-

vided accurate quantification of cell cycle time of in-vitro cul-

tures and for BEAS-2B cells highlighted hitherto unsuspected

temporal synchronization of the population. Implementation

is straightforward, allowing automated image analysis of

bright field frames acquired with a microscope of modest

performance. The ability to acquire detailed data on cell pro-

liferation dynamics, without the need for high performance

microscopy, also provides benefits beyond simplified data

acquisition. The use of “low-level” optics allows “high-level”

biological control as the imaging instrument becomes simple

enough to operate inside a cell incubator. This provides a

measurement approach in which the biology of the cells can

become the primary concern of the researcher without the

hindrance of complex imaging requirements, that is, accurate

control of the cellular environment can be achieved within a

dedicated system rather than integrated into the microscope.
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