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ABSTRACT 26	

Immunofluorescence microscopy is an essential tool for tissue-based research, yet data reporting is 27	
almost always qualitative. Quantification of images, at the per-cell level, enables ‘flow cytometry-28	
type’ analyses with intact locational data but achieving this is complex. Gastrointestinal tissue, for 29	

example, is highly diverse: from mixed-cell epithelial layers through to discrete lymphoid patches. 30	
Moreover, different species (e.g., rat, mouse and humans) and tissue preparations (paraffin / 31	

frozen) are all commonly studied. Here, using field-relevant examples, we develop open, user-32	
friendly methodology that can encompass these variables to provide quantitative tissue microscopy 33	

for the field. Antibody-independent cell labelling approaches, compatible across preparation types 34	
and species, were optimised. Per-cell data were extracted from routine confocal micrographs, with 35	
semantic machine learning employed to tackle densely-packed lymphoid tissues. Data analysis was 36	

achieved by flow cytometry-type analyses alongside visualisation and statistical definition of cell 37	
locations, interactions and established microenvironments. First, quantification of E. coli passage 38	

into human small bowel tissue, following Ussing chamber incubations exemplified objective 39	
quantification of rare events in the context of lumen-tissue crosstalk. Secondly, in rat jejenum, 40	
precise histological context revealed distinct populations of intra-epithelial lymphocytes between 41	

and directly below enterocytes enabling quantification in context of total epithelial cell numbers. 42	
Finally, mouse mononuclear phagocyte – T cell interactions, cell expression and significant spatial 43	

cell congregations were mapped to shed light on cell-cell communication in lymphoid Peyer’s patch. 44	
Accessible, quantitative tissue microscopy provides a new window-of-insight to diverse questions in 45	
gastroenterology. It can also help combat some of the data reproducibility crisis associated with 46	

antibody technologies and over-reliance on qualitative microscopy.  47	
 48	

KEYWORDS 49	
Intestinal tissue, cell segmentation, machine learning, immunofluorescence, confocal microscopy, 50	
Processing tilescans in CellProfiler.  51	

52	
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INTRODUCTION 53	

Tissue microscopy provides powerful insights into biological processes across differing scales from 54	
sub-cellular to the macroscopic. For example, it enables distinct structural and sub-structural tissue 55	
regions to be defined as well as cell-cell spatial relationships to be observed (1-6). Indeed, in situ 56	

tissue-based research in gastroenterology is generally about scale, with compartment-specific 57	
analyses often desirable due to the specific physiology that occurs region-by-region. For example, 58	

cross talk between intestinal tissue and the luminal environment, cell differentiation along the crypt-59	
villus axis and immune cell maps of gut lymphoid tissues are all active research areas which are, or 60	

could be, facilitated by quantitative, in situ measures (7-11).   61	
 62	
In terms of in situ microscopy-based bioclinical research, immunofluorescence labelling and 63	

confocal imaging is the current mainstay, as it permits sensitive, quantifiable detection of multiple 64	
targets with subcellular localisation (12). Automated imaging has become standard, whilst new 65	

advances in artificial intelligence promise increased throughput through restoration of noisy images 66	
obtained at higher scan speeds (13). Yet, despite substantial advances in hardware and software, 67	
the majority of reported tissue microscopy ‘data’ remains qualitative and exemplified by the 68	

representative image. Typically, for tissue-based research, flow cytometry delivers the quantitative 69	
data and confocal microscopy is the visual means by which the spatial relationships and mechanics 70	

of biological processes are then conceptualised. There is, however, a clear advantage in combining 71	
these outputs to deliver quantification of cell types, their contents and their location, simultaneously. 72	
Indeed, the power of data mining from regular chromogen-based histology exemplifies such an 73	

approach even though the image data are lower resolution and less amenable to multi-label, per-74	
cell quantification (4,5,12).  75	

 76	
In fact, quantitative methodologies for the analysis of confocal microscope-derived tissue images 77	
have existed for at least fifteen years (1) and yet there remains a huge disconnect between what is 78	

possible and what has translated through to the biomedical community for everyday usage. 79	
Reasons for this have not been formally established, but interdisciplinary capability is a chief 80	
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suspect (14). Currently, joined-up approaches to deal with everything from optimal biological 81	

experimentation, through sample preparation and imaging, to the programming skills generally 82	
required for successful image analysis seldom reside under one roof within the biomedical 83	
community. There are also a number of philosophies as to what constitutes quantitative 84	

immunofluorescence microscopy, ranging from basic summation of fluorescence data across a 85	
given area, through integration within approximated cell-objects, to accurate per-cell identification 86	

and quantification (termed ‘cell segmentation’) (1,2,15). The latter has marked advantage as, within 87	
the limits of a microscope’s resolution, it permits per-cell quantification of information in a manner 88	

amenable to familiar, flow cytometry-type gated analyses (1-3,16,17). It also allows distances to be 89	
established accurately, meaning that not only can cells be counted, but their content and spatial 90	
relationship to other cells or histological features can also be quantified (6).  91	

 92	
Despite these advantages, accurate cell segmentation in tissues is complex, surprisingly sample-93	

specific and time consuming for the non-expert (1,18). Much work to date has grown out of 94	
approaches established for cultured cells (19) as sample homogeneity facilitates image analysis. 95	
Generally, however, tissues are not at all homogenous. In the intestine, for example, a multi-cell 96	

epithelial layer with diffuse lymphoid tissue beneath (the lamina propria) may be juxtaposed to a 97	
dense B-cell dominant follicle with a different overlying epithelial layer (e.g., the Peyer’s patch). For 98	

these reasons, accurate, quantitative, cell-based image analysis, compatible with such varying 99	
structure and delivered in a manner that is accessible to bio-clinical scientists has not yet been 100	
developed in gastroenterology.  101	

 102	
Here, we demonstrate pragmatic methodology to enable per-cell immunofluorescence quantification 103	

from confocal microscopy-derived images of diverse gastrointestinal tissues, and we exemplify the 104	
approach with analyses of general interest to the field. We show how image-based cell profiling can 105	
take gastrointestinal tissue microscopy beyond representative images with quantification of (i) 106	

common or rare cellular events alongside (ii) their cell content and (iii) location, coupled with 107	
visualisation and statistical definition of cell-cell interactions and tissue microenvironments. 108	
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Importantly, we use open-source, user-friendly software platforms to carry out the work, and to 109	

construct quantitative pipelines, which similarly we provide here in open-access formats. 110	
 111	
 112	

MATERIALS & METHODS 113	
ANIMAL TISSUE COLLECTION 114	

Mouse (9-12 week-old) and Rat (13 week old) tissues were collected from surplus healthy animals 115	
sacrificed for husbandry purposes by CO2 asphyxiation and cervical dislocation. Ileal draining 116	

mesenteric lymph nodes were removed alongside jejunal / ileal intestinal samples (the latter 117	
containing Peyer’s patches) in ~ 2 cm lengths. Upon excision, tissue samples were immediately 118	
plunge frozen into isopentane pre-cooled on melting dry ice, transferred to labeled cryovials, and 119	

stored in liquid nitrogen until use. Tissue samples for paraffin embedding were fixed in neutral 120	
buffered formalin (≥ 4 h), before transfer to tissue cassette, and automatic processing by standard 121	

hospital protocol (dehydration by ethanol series, three changes of 100% xylene (at 30 °C), then 122	
three changes of paraffin wax (at 62 °C).  123	
 124	

HUMAN TISSUE COLLECTION & ETHICS 125	
Following informed consent and with approval from the Regional Ethical Review Board, Linköping, 126	

Sweden, specimens from the neo-terminal ileum next to the ileo-caecal valve were collected during 127	
surgery from one inflammatory bowel disease (IBD) patient with Crohn’s disease (49 years, female) 128	
and one patient with colonic cancer (68 years, female), as a non-inflammatory bowel disease (non-129	

IBD) control. The Crohn’s disease patient had no anti-inflammatory medication and indication of 130	
surgery was ileitis. The tissue was macroscopically non-inflamed. The tissue from the colon cancer 131	

patient was free from cancer; the patient had no generalised disease and had not received 132	
preoperative chemo- or radiotherapy. Studies using human tissue were also approved by the UK 133	
NHS Health Research Authority, North West – Greater Manchester East Research Ethics 134	

Committee, REC reference 18/NW/0690. 135	
 136	
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USSING CHAMBER EXPERIMENTS 137	

Human ex vivo tissue ileal samples were transported directly from the operating theater to the 138	
laboratory in Krebs buffer. Three tissue segments per individual were mounted in modified Ussing 139	
chambers (Harvard apparatus) as previously described (20). Transepithelial resistance and 140	

potential difference was used to assess tissue viability. Crohn’s disease associated adherent 141	
invasive Escherichia (E.) coli strain LF82 were transformed with a plasmid (pEGFP, BD 142	

Biosciences) for expression of enhance green fluorescence protein (EGFP) as described previously 143	
(21). Live LF82 were then added to the mucosal side of the tissues at a final concentration of 1x108 144	

CFU/mL. After 20 min, tissues were fixed in chambers with 4 % PBS-buffered paraformaldehyde for 145	
12 h at 4°C. The tissue samples were then immersed in 30% sucrose until embedded in optimal 146	
cutting temperature compound (OCT) for cryostat sectioning according to the protocol outlined 147	

below. 148	
 149	

TISSUE LABELLING & GENERAL IMMUNOFLUORESCENCE PROTOCOL 150	
For cryostat sectioning, frozen tissue samples were transported on ice and transferred into the 151	
cryostat chamber (- 20 °C) to acclimatise for 30 min. Samples were trimmed with a safety razor and 152	

transferred to moulds containing pre-chilled OCT (VWR, 00411243). Sections were cut at 12 micron 153	
thickness, picked up on superfrost plus coated slides (ThermoFisher, J1800AMNT) and rested at 154	

room temperature for at least 2 h prior to immunofluorescence labelling. Formalin fixed paraffin 155	
embedded (FFPE) sections were cut at 5 micron thickness, then fully dewaxed and rehydrated by 156	
baking at 60 °C for 1h, changing twice through xylene, a reverse ethanol series (100%, 70%, 50%, 157	

10%), followed by 1 min in water. All sections were then ringed with hydrophobic barrier pen (Vector 158	
Laboratories, H-4000) and unfixed cryostat sections were additionally fixed in 4% 0.1M phosphate 159	

buffered (pH 7.4) paraformaldehyde for 10 min. All sections were transferred to block buffer (10% 160	
goat serum (ThermoFisher, 16210064), 2% bovine serum albumin (Biosera, PM-T1726) diluted in 161	
25 mM Tris-buffered (pH 7.4) saline (TBS) containing 25 mM glycine) for at least 1 hour. The block 162	

buffer was removed, and 100 µL of the necessary primary antibodies in block buffer were added to 163	
each section (concentrations and manufacturer’s codes specified, Supplementary Table 1). 164	
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Sections were incubated for 1 hour at room temperature under gentle agitation on a rocking 165	

platform. Each section was then washed thoroughly with three, 100 µL changes of TBS. Nuclei were 166	
counterstained using a 1:2500 dilution of Hoechst 33342 (ThermoFisher, H3570) in TBS. Sections 167	
were washed once with 100 µL TBS, prior to addition of the secondary antibodies (concentrations, 168	

manufacturer’s codes and conjugated fluorophores shown in Supplementary Table 1). In with the 169	
secondary antibodies, phalloidin-AlexaFluor 647 (ThermoFisher, A22287) was included at ~ 660 nM 170	

to label cell membranes in frozen sections, or, 20 µg/mL wheat-germ agglutinin (WGA)-AlexaFluor 171	
647 (ThermoFisher, W32466) was used to label membranes in the FFPE sections. Secondary 172	

antibody and cell outlines stains were incubated with the tissue sections for 1 hour on a rocking 173	
platform. Each section was then washed with three changes of TBS prior drying carefully around 174	
each section with absorbent paper and mounting with #1.5 coverslips in Prolong Diamond mountant 175	

(ThermoFisher, P36965).    176	
 177	

GENERAL MICROSCOPY  178	
2-D images (typically 2048x2048 pixels per tile) were collected using sequential scanning on a 179	
Leica SP8 confocal microscope equipped with 405 nm, 488 nm, 562 nm and 633 nm lasers using 180	

plan-apochromat 63X/1.4 or 40X/1.3 oil immersion objectives. Tilescans were collected with 10% 181	
edge overlap using focus mapping to maximize throughput.  182	

 183	
IMMUNOFLUORESCENCE CONTROLS 184	
For each study, image data were obtained in a single run under identical settings, with supporting 185	

secondary-only, isotype and leave-one-out antibody controls included in tissue-matched serial 186	
sections to assess background fluorescence, non-specific binding and spectral cross-talk, 187	

respectively. For the Ussing’s chamber work involving E. coli exposures to ex-vivo human tissues, a 188	
biological negative control (i.e., images for tissue exposed to Krebs buffer alone without E. coli) was 189	
also included.  190	

 191	
TILESCAN PROCESSING CODE 192	
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Tilescans were stitched together using the ‘Mosaic Merge’ function in the Leica LASX software. The 193	

registered images were then cut up into ~ 4000x4000 pixel tiles with edge overlaps for processing 194	
with the open source and freely available CellProfiler (15) (www.CellProfiler.org) software using a 195	
custom function called ‘TilescanToCellProfiler’. This function structures the image data for input, 196	

and also stores user choices in a side-car information file for subsequent automated reassembly. 197	
After extracting per-cell data using CellProfiler, a second function called ‘CellProfilerToTilescan’ was 198	

written to reassemble the data. This reassembles the segmented cell masks (22) whilst removing 199	
‘double-hits’ on overlap edges. It also extracts and spatially reassembles all of the cell feature data, 200	

whilst assigning a unique, master cell identity number and the correct global cell position 201	
coordinates for every cell. These functions are provided for MATLAB and Python alongside example 202	
data and full instructions at the BioStudies database (http://www.ebi.ac.uk/biostudies) under 203	

accession number S-BSST305.  204	
 205	

SINGLE-CELL SEGMENTATION AND IMMUNOFLUORESCENCE QUANTIFICATION  206	
Cell segmentation results were obtained using CellProfiler and Ilastik (23) (www.ilastik.org) 207	
softwares. Example image data and analysis pipelines (built using CellProfiler version 3.1.9 and 208	

Ilastik 1.3.3) and accompanied by screen-cast video walkthroughs are available for download at the 209	
BioStudies database (http://www.ebi.ac.uk/biostudies) under accession number S-BSST305. Details 210	

of the section-type, species and tissue-type, objective lens and numerical aperture, image pixel 211	
density and the cell segmentation strategy used in every analysis are summarised in Table S2. In 212	
brief, villus mucosal tissues were segmented using a watershed approach, wherein nuclei were 213	

defined as primary objects before the actin (cryostat sections) or WGA (FFPE sections) delineated 214	
cell outlines were classified into cell-objects using a ‘IdentifySecondaryObjects’ module. As 215	

lymphoid tissues segmented poorly using the watershed approach, these images (i.e., Peyer’s 216	
patches, mesenteric lymph nodes (MLNs)) were first classified into ‘cell outline’, ‘intracellular 217	
environment’ or ‘other / background’ probability maps using pixel classification machine learning in 218	

the Ilastik software (feature selection shown, Figure S1, method exemplified, Figure S2). The 219	
resultant probability maps of each cell were then segmented to yield cell-objects via an 220	



	 9	

‘IdentifyPrimaryObjects’ module in CellProfiler. Immunofluorescence channels were preprocessed 221	

by two-class Otsu thresholding with a manual lower threshold set (independently for each analysis) 222	
at the level required to remove ≥ ~ 95% of fluorescence in tissue-matched, secondary antibody-only 223	
control images. Fluorescence intensity values per cell, alongside per-cell size and shape features 224	

were then measured for all channels by integration in each cell-object using the 225	
‘MeasureObjectSizeShape’ and ‘MeasureObjectIntensity’ modules in CellProfiler. In the same way, 226	

integration of thresholded images outputted as binaries was used to measure the fluorescence area 227	
per-cell. Cell features were written to both text files (i.e., accessible via Excel spreadsheet), and 228	

MATLAB objects for subsequent analysis. 229	
 230	
SCORING SEGMENTATION ACCURACIES  231	

The pixel overlap agreement between manually and automatically segmented cell-objects was 232	
scored using the widely used intersection over union metric (Jaccard index) (24,25).  233	

 234	

! !,! =  |!∩!||!∪!| =
|!∩!|

! ! ! !|!∩!|         (1) 235	

 236	
 237	
Where P and G are two sets containing pixel positions for the prediction (P) and ground truth (G), 238	

respectively. A score of 0 represents no overlap (i.e., false negative) whereas 1 is a perfect, per-239	
pixel overlap. With this approach, it is acknowledged that a value of ~ 0.7 is a good segmentation 240	

result, and values of ~ 0.9 lie close to human annotation accuracy (26). This benchmarking was 241	
carried out without first removing mis-segmented cells. 242	
 243	

 244	
SINGLE CELL DATA: PREPROCESSING  245	

To remove mis-segmented cells, plots of each cell-object’s integrated nuclei and cell outline (i.e., 246	
actin or WGA) scores were plotted according to data density using ‘dscatter’ (27). A cell population 247	
for analysis was then gated manually from these scatterplots using the inbuilt MATLAB function 248	
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‘inpolygon’ to trace the contour surrounding the main cell population. This selection was then held 249	

the same when processing all image-sets associated with an experiment (i.e., experimental data 250	
and tissue matched controls).  251	
 252	

INTRAEPITHELIAL LYMPHOCYTES: IMAGE ANALYSIS 253	
Pixel classification machine learning in the Ilastik software was used to project masks for the 254	

epithelium, lamina propria and lumen ‘tissue compartments’ directly from the actin channel. In 255	
MATLAB, the epithelial mask was refined by filling isolated interior pixels using the inbuilt function 256	

‘bwmorph’, prior to performing an erosion followed by a dilation using disk structuring elements (5 257	
and 10 pixels, respectively) to bridge gaps. To find the different intraepithelial lymphocyte (IEL) 258	
subclasses, the resulting epithelial mask was skeletonised using ‘bwskel’, with spurs less than 500 259	

pixels removed. Expanding the skeleton using ‘imdilate’ with a disk-structuring element of 32 pixels 260	
then created a central path mask through each ‘loop’ of epithelium. The IEL sub-classifications 261	

IELsub and IELinter were subsequently defined as CD3+ cells with centroids either inside the epithelial 262	
region, or inside this central path mask, respectively. The width of the central path was defined 263	
manually, by visually checking that IELinter events were consistently caught within the mask, whilst 264	

IELsub events were excluded outside.  265	
 266	

STATISTICAL ANALYSES 267	
Non-parametric differences between data from different groups were analysed by Wilcoxon Rank 268	
Sum test. Statistically significant congregations of cells (i.e., indicative of cellular zonation) were 269	

identified relative to what would be expected by random chance given the frequencies of different 270	
cell types present using the Getis-Ord GI* statistical approach (28). This measures the spatial 271	

concentration of values xj associated with j values within a distance d of the value xi. The ratio G is 272	
defined as: 273	
 274	

!! ! = !!" ! !!!
!!!

!!!
!!!

       (2) 275	

 276	
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where wij(d) defines the contribution to the numerator of the ratio depending on the distance d, for 277	

example using i.e., wij(d) = 1 if dij < d else; wij(d)  = 0 if dij > d. The Getis-Ord statistic is then given 278	
by: 279	
 280	

! !! ! = [!! ! !!(!! ! )]
!"# !! !

       (3) 281	

 282	

Where, !(!! ! ) represents the expected fraction of items within d, assuming a completely random 283	

distribution calculated as: 284	
 285	

! !! ! =  !!"(!)!
!!!          (4) 286	

 287	

The value ! !! !  now describes the difference in the fraction of values within the distance d from 288	

location i from the random expected value relative to the standard deviation. In our example we 289	

discretise the field of view into a grid and value xi is defined as the number of cells of a certain 290	
phenotype in the grid position i. 291	

 292	
 293	
RESULTS 294	

With a specific focus on intestinal tissues, this works aims to develop and demonstrate open, user-295	
friendly methodologies that enable per-cell immunofluorescence quantification in situ using routine, 296	

confocal microscopy-derived images. Here, we focus on analysis of 2-D images, as qualitative 297	
display in this format is the current standard in the bio-clinical sciences.  298	
 299	

Labelling Gastrointestinal Tissues for Cell Segmentation 300	
First, we sought simple fluorescence labelling strategies compatible across species (i.e., antibody 301	

independent) for the purpose of delineating individual nuclei and cell outlines for subsequent cell 302	
segmentation. For both human and murine ileal sections, cut from either regular paraffin-embedded 303	
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(i.e., FFPE) or snap-frozen and OCT embedded tissues, the fluorescent nuclear dye, Hoechst 304	

33342, provided a straightforward, reliable means to label cell nuclei (Figure 1A-L). Different 305	
strategies were required however to clearly delineate cell outlines in the two different section-types. 306	
Frozen sections exhibited artefacts when cell membranes were directly labelled using phospholipid 307	

labelling with wheat germ agglutinin (WGA) conjugates. This was especially notable at goblet cell 308	
sites, and is likely explained by non-specific binding to mucins (Figure S3). To avoid this, actin 309	

cytoskeletal staining via fluorescent phalloidin conjugates was used, and provided good 310	
demarcation of cell outlines (Figure 1A-D). In contrast, for FFPE sections the situation was 311	

reversed. The cell actin filaments labelled by phalloidin conjugates were destroyed by alcohol 312	
exposure during the formalin fixation process and thus could not be labelled for cell outline 313	
determination (Figure S3). However, in FFPE sections, direct cell membrane labelling with WGA 314	

was a successful strategy (Figure 1E-H) probably because mucins were cleared when exposed to 315	
the solvents during processing. 316	

 317	
Cell Segmentation Strategies Using Open Source Tools 318	
With approaches for per-cell labelling established, we next considered cell segmentation strategies. 319	

Once again, dual strategies were necessary but, this time, dependent upon tissue region rather than 320	
tissue processing. For villus regions where cells are not tightly packed but cell types vary greatly in 321	

shape, and cell outlines are not always clear, a routine seeded watershed approach, readily 322	
deployed in CellProfiler appeared best. With this, the nucleus of each cell is first segmented and 323	
then used as an anchor point from which to define each cell’s outline (Figure 1A-D). In densely 324	

packed, pure lymphoid tissue (e.g., MLN or Peyer’s patch), however, there were difficulties in 325	
accurately resolving individual nuclei and the resulting watershed approach performed poorly 326	

(Figure S4). To resolve this, pixel classification machine learning in the Ilastik software was used to 327	
convert these images into probability maps of ‘cell outlines’, ‘intracellular environments’ or 328	
‘background / other’ (shown, Figure S2). The intracellular probability map was then directly 329	

segmented into cell objects in CellProfiler using a IdentifyPrimaryObjects module (Figure 1E-L). Of 330	
note, this latter approach (i) only required cell outline information (i.e., actin or WGA) for effective 331	
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segmentation, freeing up the nuclear channel for other targets and (ii) was compatible with lower-332	

resolution input images (e.g., Figure 1I-L), as results depend not upon contrast boundaries in the 333	
source image but upon derived probability maps. Thus, in conjunction with the antibody-334	
independent, tissue labelling strategies outlined above, these strategies permit cell segmentation 335	

across diverse intestinal tissues and are readily transferable between species and section-types 336	
(e.g., mouse, rat, human; villus mucosa, Peyer’s patch, MLN; frozen and paraffin embedded are 337	

demonstrated, Figure 1). For all analyses, histological information alongside imaging specifics and 338	
the cell segmentation strategy used are summarised in Table S2. 339	

 340	
Accuracy of Cell Segmentation 341	
The automated cell segmentations presented in Figure 1, which are derived across varying species 342	

and tissue preparations, were benchmarked – cell-by-cell – against hand-drawn manual 343	
segmentations using the commonly employed intersection over union approach (Jaccard index) (24-344	

26) (>1000 cells scored; Figure S5). This benchmarking was carried out without first removing mis-345	
segmented cells. Median scores in terms of pixel overlap were consistently between 0.80 – 0.83, 346	
with scores of ~ 0.9 recognised as the maximum realistically feasible with this approach due to the 347	

inherent accuracy limits of the manual segmentation itself (i.e., due to line thickness, outline 348	
smoothing etc.), and 0.8-0.9 considered strong agreement (26) (exemplified, Figure S5).  349	

 350	
Open Source Image Analysis 351	
The source images and the complete CellProfiler / Ilastik image analysis pipelines, which are 352	

necessary to enable the segmentation strategies shown in Figure 1, are provided at the BioStudies 353	
database (http://www.ebi.ac.uk/biostudies) under accession number S-BSST305. Both the 354	

CellProfiler and Ilastik softwares are freely available, and no programming is required for 355	
implementation of the image analysis routines described. Results, for example per-cell shape and 356	
immunofluorescence quantifications can be outputted as text files easily openable as EXCEL 357	

sheets, or saved as MATLAB or HDF5 objects. 358	
 359	
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Immunofluorescence Quantification and Exclusion of Debris 360	

Following cell segmentation, per-cell immunofluorescence quantification was implemented by 361	
CellProfiler pipeline using Otsu thresholding and the ‘MeasureObjectIntensity’ and 362	
‘MeasureObjectSizeShape’ modules – as described in the Methods.  Here, we subsequently chose 363	

to process the outputted tables of per-cell measurements using MATLAB. One aspect in tissues that 364	
required a different approach from in vitro cells was the determination of mis-segmented cell-objects 365	

that should be discarded prior to analysis (i.e., the debris equivalent of flow cytometry). For cultured 366	
cells, a recommended approach involves discarding objects that lie outside of the 5% or 95% 367	

percentiles by size (19). In tissue however, this approach is less effective due to the diversity of 368	
cross sectional cell shapes and sizes including the occurrence of infrequent cell types of irregular 369	
size. Instead, simple density plots (e.g., insets, Figure 1 B/F/J) of each cell-object’s integrated 370	

nuclear and cell outline fluorescence (i.e., WGA or actin) provided a route to gate out poorly 371	
segmented cells. Events that fell outside of the main population due to abnormally high (e.g., 372	

doublets) or low (e.g., true debris) signals were excluded (discarded events exemplified, Figure 1 - 373	
grey squares). A further advantage of this approach is that cells just partially clipped by the optical 374	
section tend to get removed, providing more consistent sampling of cells’ cross-sectional 375	

immunofluorescence data. 376	
 377	

Rare Events: E. coli Passage into Ileal Tissue 378	
To demonstrate how image-based cell profiling can tackle rare event analysis of intestinal tissue, 379	
the passage of GFP-labelled E. coli strain LF82 into human ileum was considered (Figure 2). Three 380	

tissue samples taken from one non-IBD patient with colon cancer, and one IBD patient with 381	
macroscopically non-inflamed Crohn’s disease, were investigated. A fourth tissue sample from the 382	

Crohn’s patient was exposed to Krebs buffer alone (i.e., without E. coli) as a biological negative 383	
immunofluorescence control (Figure 2A-C).  384	
 385	

Images were collected from villus tissue regions across ~ 6-8 tissue sections taken at random 386	
intervals throughout each biopsy. This approach enabled rapid sampling from across the full 387	
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dimensions of each tissue sample. As expected, no punctate spots of anti-GFP fluorescence were 388	

observed in the tissue biopsies exposed to Krebs buffer only (Figure 2A). In each of the three 389	
cancer control non-IBD tissue biopsies, the few E. coli that were observed were bound to the apical 390	
side of the epithelium (indicated, Figure 2B). Contrastingly, in all three tissue biopsies from the 391	

patient with Crohn’s disease, transmucosal E. coli were identified within both the epithelial layer and 392	
lamina propria (Figure 2C). 393	

 394	
The aim of this work, however, was to move beyond careful qualitative observation – as described 395	

above – to objective quantification. To this end, the watershed approach developed for mucosal 396	
tissue rapidly allowed per-cell assessment of ~ 5,000 cells per tissue sample. The background 397	
fluorescence distribution was then established on the tissue sample exposed to Krebs buffer alone 398	

by plotting a cell-number normalised histogram of the signal in the anti-GFP channel (total cells 399	
analysed = 5,475). When this step was repeated for the non-IBD tissue samples that had been 400	

exposed to E. coli, virtually no signal – above the established background – was observed (Figure 401	
2D, 14,671 cells analysed). This demonstrated that the E. coli were not readily able to achieve 402	
transmucosal passage within the exposure timeframe in the non-IBD tissues. In contrast, when this 403	

was repeated in the Crohn’s disease tissue samples, a positive increase in the per-cell fluorescence 404	
distribution was observed (Figure 2D, 15,226 cells analysed). Comparison of this increase relative 405	

to the non-IBD group showed significance at the p < 0.001 level (Wilcoxon rank sum, Figure 2E). 406	
 407	
Oftentimes it is convenient to call a cell as simply ‘positive’ or ‘negative’ – in this case meaning cells 408	

with anti-GFP fluorescence indicative of ≥1 E. coli event or none. As with flow cytometry, gating is 409	
required to determine this cut off and, again as for flow cytometry, there is a degree of subjectivity 410	

relating to the stringency of specificity versus sensitivity. Here, when a gate was applied above the 411	
defined background fluorescence (indicated in Figure 2D), then the number of anti-GFP positive 412	
cells in the Crohn’s disease tissue was just 282 or 1.85%. The data therefore demonstrate how the 413	

image-based cell profiling approach can quantify rare events objectively, substantiating the 414	
representative images shown.  415	
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 416	

Processing Large Unbroken Image-Fields: Working With Tilescans 417	
Working with sets of individual images, obtained randomly across multiple tissue sections, as 418	
above, is one approach in image-based cell profiling. However, under other circumstances it may be 419	

desirable to work with high resolution, unbroken fields (i.e., tilescans) in which per-cell 420	
immunofluorescence analyses can be augmented by histological context (tissue mapping). 421	

CellProfiler does not currently possess dedicated modules for processing tilescans, and it is often 422	
not possible to directly process input images much larger than ~ 4,000 x 4,000 pixels due to 423	

memory limitations on the local machine. For this reason, here we developed two software functions 424	
specifically aimed at processing immunofluorescence tilescans. The first, which we call 425	
‘TilescanToCellProfiler’, takes stitched tilescans directly in most proprietary microscopy formats and 426	

cuts them into a series of user-defined, manageably-sized tiles for CellProfiler input. After 427	
processing, a second function called ‘CellProfilerToTilescan’ seamlessly reassembles the cell 428	

segmentation and spatial positions of the extracted, per-cell data. These functions can be deployed 429	
with a single line of code in the programming environments MATLAB or Python. Example images, 430	
code and full instructions for the non-expert are provided at the BioStudies database 431	

(http://www.ebi.ac.uk/biostudies) under accession number S-BSST305.  432	
 433	

Machine-Learning Tissue Compartments: The Intestinal Epithelium  434	
The highly convoluted shape of the gastrointestinal mucosa makes accurate, region-of-interest 435	
selections for different tissue ‘compartments’ (e.g., epithelium, lamina propria, etc.,) complicated 436	

and time consuming to perform. At the same time, compartment-specific analyses are often 437	
desirable due to the specific physiology that occurs region-by-region. To demonstrate the 438	

automation of compartment-specific gastrointestinal analysis, we set out to profile intra-epithelial T 439	
lymphocytes in longitudinal frozen sections of rat jejunum – just using a single CD marker and the 440	
histological context afforded by in situ microscopy. To accurately identify the epithelium, one of a 441	

pair of serial frozen sections was immunolabelled for epithelial cell adhesion molecule (EPCAM) – 442	
alongside nuclei and actin. This precisely pinpointed the location of the epithelial region between the 443	
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basement membrane and the apical enterocyte surface (29-31) (Figure 3A). Using this EPCAM 444	

labelling as a guide to inform pixel annotation, we then trained an Ilastik machine learning model to 445	
mask the epithelium, as well as the lumen and lamina propria tissue compartments, directly from the 446	
actin channel itself. In this way, the EPCAM labelling was no long required (Figure 3B) (process 447	

exemplified stepwise, Figure S6). Of note, we also found that the same approach worked with WGA 448	
labelling in FFPE sections (demonstrated, Figure S6E). 449	

 450	
Utilising Locational and Cellular Information: Profiling Intraepithelial Lymphocytes  451	

Next, we set out to utilise both tissue compartment and per-cell image-data to profile intraepithelial 452	
T lymphocytes in the jejunal mucosa. In the second serial section, a 112-image tilescan containing a 453	
wide region of villous mucosa was collected with anti-CD3 labelling to identify T cells. As both the 454	

EPCAM and CD3 antibodies were raised in the same host, instead of dual-labelling, the tissue 455	
compartment model was deployed in the mucosa to provide a mask for the epithelium (Figure 3C).  456	

 457	
To understand and quantify background fluorescence, as well as the non-specific binding capacity 458	
of the CD3 antibody in the rat jejunal tissue, set of ten image-fields for either the secondary-459	

antibody alone (i.e., 2o only control), or the secondary plus an irrelevant primary antibody of the 460	
same isotype (i.e., an isotype control) were collected for the CD3 channel in adjacent, serial 461	

sections. Per-cell immunofluorescence data was then extracted from the CD3 tilescan (~ 60,000 462	
cells) and control image-sets (~ 6,000 cells) using the watershed cell segmentation pipeline 463	
optimised for mucosal tissue (above). A CD3+ cell population was then formed by gating cells with 464	

per-cell fluorescence values greater than those observed in the 2o-only and isotype controls (i.e., as 465	
is typical in flow cytometry) (Figure 3D). Cell centroid markers were displayed on each gated cell, to 466	

help pinpoint CD3+ T lymphocytes both visually and for subsequent locational categorisation.. 467	
Interfacing this gated cell population with the epithelial mask allowed further division of the CD3+ cell 468	
population into intra-epithelial lymphocyte (IEL) and lamina propria T cell subpopulations by 469	

identification of cells with centroids inside or outside of the mask (Figure 3D). Upon close study of 470	
the defined IEL CD3+ cells in context of the masked epithelium, it was clear that this cell population 471	
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existed in two distinct forms. IEL events were either observed in close association with the basal 472	

aspect of enterocytes (hereafter termed ‘IELsub’), or, were truly between individual enterocytes 473	
(hereafter termed ‘IELinter’). To split the IELs into these two classes, the epithelial mask was 474	
subjected to a morphological process called skeletonisation. This reduced the epithelial mask to 475	

yield a central path through each ‘loop’ of villus epithelium (process exemplified, Figure S6). 476	
Inclusion within this sub-mask allowed the central, IELinter population to be separated out, leaving 477	

behind the IELsub cells (Figure 4A-E). 478	
 479	

In this way, harnessing per-cell fluorescence data in combination with the precise histological 480	
context provided by the high-resolution tilescan allowed the identified CD3+ cells to be subdivided 481	
into three distinct subpopulations (i.e., lamina propria CD3+ (LPCD3+), IELsub and IELinter). This, 482	

alongside the segmentation of all cells, whether immunolabelled or not, provided data well suited to 483	
automated cell counting in the context of a tissue map. Hence, we measured the areas occupied by 484	

the different designated compartments – alongside their cell counts – in total, per 100 cells, and as 485	
ratios between the different tissue compartments (Figure 4F-I). Interestingly, whilst not so apparent 486	
visually, the epithelium occupied a greater area (Figure 4F) and contained more total cells (Figure 487	

4G/I) than the underlying lamina propria. CD3+ cells were also determined more abundant per-cell 488	
in the lamina propria than in the epithelium (Figure 4I). Meanwhile, whereas IELs were quite 489	

common, the IELinter sub-class were rare events (~ 4 per 100 epithelial cells). This was especially 490	
true when compared to the IELsub class, at ~ 13 per 100 epithelial cells (Figure 4H/I). 491	
 492	

Cell Interactions and Expression: Mapping in the Peyer’s Patch 493	
Access to per-cell immunofluorescence data collected in situ provides the opportunity to consider 494	

both cell expression and physical cellular interactions via nearest-cell neighbour analyses. 495	
Lymphoid tissues represent one such environment in which interaction and expression data are of 496	
key importance. Here we considered CD11c+ mononuclear phagocyte  – CD3+ T cell expression 497	

and interactions in a transverse section of mouse Peyer’s patch (24 image tilescan, ~ 16,000 cells) 498	
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(Figure 5). A basic overview of the structure and cellular zonation of the murine Peyer’s patch is 499	

provided in Figure S7.  500	
 501	
Image-data were collected for six channels: fluorescence data were collected for nuclei, actin, 502	

CD11c (for mononuclear phagocytes; i.e., antigen presenting cells) and CD3 as a pan T-lymphocyte 503	
marker. Alongside, transmitted and reflected light were also collected to inform on overall histology 504	

and section quality (Figure 5A). As before, data for the respective 2o-only and isotype controls were 505	
also collected alongside in tissue-matched serial sections. As per-cell immunofluorescence 506	

quantification was to be carried out on two of the channels (i.e., CD3 and CD11c), leave-one-out 507	
control image-sets were also taken to check for any fluorescence cross-talk between channels. This 508	
involved labelling additional serial sections with either CD11c or CD3, yet collecting the respective 509	

fluorescence data for both channels. In this way, any cross-talk into the ‘empty’ channel could be 510	
detected in the resultant per-cell fluorescence distributions. 511	

 512	
Using the Ilastik / CellProfiler machine learning cell segmentation pipeline, alongside the software 513	
reassembly (tilescan) functions described above, the lymphoid tissue was segmented seamlessly 514	

across the entire Peyer’s patch (Figure 5B). A region-of-interest (ROI) was then set around the 515	
lymphoid tissue, and just the CD11c and CD3 immunofluorescence data were shown on top of the 516	

segmented-cell outlines inside the ROI. Outside of the ROI, just the actin staining was displayed, to 517	
provide histological context (Figure 5C/D). This visualisation approach was found to dramatically 518	
reduce the visual complexity of the six-channel image, permitting display of most important 519	

information in a per-cell and visually intuitive manner – across the scale of the entire lymphoid 520	
follicle.  521	

 522	
To build CD3+ and CD11c+ cell populations, after debris removal (discussed above), gating was first 523	
used to select cells with fluorescence values above those observed in the 2o-only and ‘leave-one-524	

out’ controls. The fluorescence distributions of the isotype controls were also used to inform gating. 525	
Here, whilst we gated above values high enough to remove > ~ 99% of cells from the isotype 526	
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distributions, gating at the maximum was avoided for fear of building highly specific, yet poorly 527	

sensitive cell populations (Figure 5E). Due to the closely packed cells, and in conjunction with the 528	
expression of CD11c and CD3 immunofluorescence on the cell membrane, it was found that adding 529	
a second sequential gate on the area of fluorescence within each cell helped to reduce ‘bystander-530	

positive’ events caused by small amounts of fluorescence spanning the segmented-cell outlines and 531	
manifesting in immediately adjacent neighbouring cells (further discussion/exemplification provided, 532	

Figure S8). In this way, cells exhibiting CD marker fluorescence all around their perimeters were 533	
better isolated from their immediate neighbours, whilst maintaining sensitivity (Figure 5F, inset). To 534	

aid this second gating step, cell-centroid markers for the identified cell populations were placed onto 535	
the immunofluorescence images, as described above, providing visual feedback (Figure 5F). As 536	
expected, the sub-epithelial dome (SED) was rich in mononuclear phagocytes and the inter-follicular 537	

region (IFR) at the right of the image contained large numbers of T-cells. Surprisingly however, a 538	
population of highly juxtaposed, CD11c-CD3 neighbouring cells (i.e., region shown in Figure 5D) 539	

that still identified positive in both gates after bystander removal were identified, indicating an 540	
interaction (17) relative to other cells, and suggesting a likelihood of cell-cell communication (Figure 541	
5F). 542	

 543	
In addition to placing markers on cell centroids to delineate the gated cell populations (Figure 6A), 544	

other methods capable of clearly visualising the single-cell data and consequent spatial 545	
relationships across the scale of the complete Peyer’s Patch were sought. In Figure 6B, the 546	
marker-placement view was simplified further by flood-filling the individual segmented cell masks to 547	

clearly show the populations in a manner that could be effectively visualised at small size. The 548	
absence of immunofluorescence labelling (i.e., black, CD11c- / CD3- regions) was also informative, 549	

as within the patch, the vast majority of these double-negative cells will be B lymphocytes (32). 550	
Next, the flood-filled view was simplified further to only show CD11c cells with touching CD3 551	
nearest-cell neighbours (including juxtaposed CD11c/CD3 cells) (Figure 6C). In this way, the view 552	

gives a sense of the spatial distribution of APCs within interactive distances of T lymphocytes. 553	
Interestingly, it was observed that the majority of these events were predominantly congregated 554	
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around B cell follicles in the germinal center (GC) region, and were much less apparent in the SED 555	

where, probably, MNP – B cell interactions may predominate (33). 556	
 557	
Having successfully identified populations of cells, next we moved forwards to consider 558	

quantification of per-cell fluorescence (i.e., related to protein expression). To do this, we made use 559	
of the ~ 800 nm optical Z plane afforded by the confocal optics and high numerical aperture 560	

objective (63X/1.4) to isolate a thin plane through individual cells. The analysis was also aided by 561	
the ability to select for cell objects optimally cross-sectioned through their central plane during the 562	

debris removal step (discussed above), as this improved measurement consistency by sampling 563	
data from similar, central regions in each cell. To clearly visualise the data from across the whole 564	
lymphoid follicle within a reasonable figure-size, the per-cell expression of CD11c and CD3 was 565	

displayed in four intensity bands (i.e., dim, low, intermediate and high) (Figure 6D/E). Perhaps 566	
unsurprisingly given the highly mixed population of mononuclear phagocytes delineated by CD11c, 567	

no clear spatial patterning according to CD11c expression was observed (Figure 6D). For CD3 568	
however, the IFR at the right of the patch, in addition to the APC and T-cell zones around the GC 569	
were rich in CD3int/hi events, whilst the marginal zone and SED where predominated by CD3dim/lo. 570	

This may be related to T cell sub-types, or activation, and deserves further scrutiny (34). 571	
 572	

Finally, we also sought a method to statistically identify significant spatial congregations of cells so 573	
that regions of cellular zonation / established cellular microenvironments could be defined across 574	
the lymphoid follicle. To do this we harnessed both the cell location and CD11c or CD3 per-cell 575	

expression data and used these to calculate the Getis-Ord GI* spatial statistic (28). This provided a 576	
heat map identifying where statistically significant, spatial congregations of different cell types 577	

occurred relative to what should be expected by random chance – given the frequencies of the 578	
different cell types involved (Figure 6F). As expected, the SED was significantly rich for CD11c, as 579	
was the IFR for CD3. For both cell types however, the maps also revealed a wealth of complex 580	

microstructure surrounding B-cell follicles in the GC. Under the ‘steady state’ normal biology 581	
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depicted here, it was also noted that the SED was sparse in terms of congregating CD3+ T-582	

lymphocytes. 583	
 584	
DISCUSSION 585	

Here, with a specific focus on intestinal tissues, we develop open, user-friendly methodology that 586	
enables per-cell quantification using routine confocal micrographs. As a methodological 587	

advancement, it is important that the findings here are seen as a range of examples around 588	
capability, rather than individually-powered biological studies. Notwithstanding, we flag areas where 589	

the technique revealed interesting findings, including measures of spatially distinct IEL sub-590	
populations – being either between or beneath enterocytes in the villus mucosa – and the complex 591	
microstructure of cellular zonation in the Peyer’s patch, including spatial distributions of APC-T cell 592	

interactions.  593	
 594	

Our image-based cell profiling approach delivers data in three key ways: (i) it enumerates different 595	
cell types, as in flow cytometry, but it also (ii) provides precise cellular locational data with 596	
histological context and (iii) resolution and quantification of cell contents. To achieve this, a number 597	

of novel approaches had to be developed or bridged together. Firstly, we provide routes in MATLAB 598	
or Python to enable tilescan processing with CellProfiler – to include spatial reassembly of the 599	

mined per-cell data and the production of global segmentation masks with unique cell identities to 600	
enable visualisations. Secondly, to permit accurate cell segmentation, antibody-independent cell 601	
labelling was employed, which we optimised for both FFPE and frozen intestinal tissue sections. 602	

Importantly this approach does not use up antibody hosts and transfers easily and directly between 603	
species. Next, effective per-cell immunofluorescence analysis requires accurately segmented cells 604	

with mis-segmented cells (debris) excluded. We show how this can be achieved using density plots 605	
to refine a consistently sampled cell population, with the outliers (partial cells or doublets) excluded. 606	
Alongside, to tackle the difficult issue of dense cell packing in lymphoid tissues, we use semantic 607	

machine learning within a fast, user-friendly framework (23) to yield accurate cell segmentations. 608	
Finally, we demonstrate how inadvertent bystander-positive cells can be obviated through 609	
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sequentially gating on fluorescence intensity followed by fluorescence area, and suggest that any 610	

remaining bystanders are indicative of cell-cell interactions. We also demonstrate how spatial 611	
statistics can be employed to better define tissue microenvironments in terms of identifying 612	
significant cellular congregations.  613	

 614	
Here we use the popular CellProfiler software as a ‘backbone’ to enable per-cell quantification.  615	

Importantly, its pipeline-based style is extremely flexible, and can use original, deconvolved and / or 616	
spectrally unmixed input images from almost any microscope or upstream software package. 617	

Moreover, the pipelines provided here can also utilise probability maps to enable cell segmentation 618	
from any source, including, where necessary, more advance machine learning approaches such as 619	
deep convolutional neural networks (26). Of note, a delivery of the increasingly popular Unet 620	

architecture within the user-friendly environment of Ilastik is planned for release in spring 2020 (35). 621	
 622	

In embracing such a technical approach to tissue analysis, it is critical that the fundaments of robust 623	
immunofluorescence methodology are not overlooked. In our experience, best possible tissue 624	
orientation helps greatly in interpretation of outputs. Moreover, our approach does not obviate good 625	

practice in labelling and imaging: rather, success relies upon it. Controls, to assess background 626	
autofluorescence and non-specific antibody binding, are extremely important, alongside assurance 627	

that fluorescence signals do not cross between channels. Here, we have demonstrated the use of 628	
2o-only, isotype, leave-one-out and biological negative controls collected in tissue-matched, serial 629	
sections to assess these parameters. We then use Otsu thresholding in conjunction with gated 630	

analyses to accurately isolate cell populations and measure cell expression / contents. Of course, 631	
these controls in themselves do not ensure that the correct target is being labelled and, as always in 632	

such work, proper validation of antibodies remains essential (36,37).  633	
 634	
Our accessible approach to per-cell analysis of tissue sections contrasts with other techniques.  635	

Whilst imaging mass cytometry (e.g., ‘CyTOF’), enables the use of dozens of antibody markers, it 636	
has lower spatial resolution and necessitates highly specialist instrumentation for detection (6,18). 637	
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Although high throughput and extremely powerful within diagnostic pathology, packages that permit 638	

the analysis of chromogen stained slide-scans lack the resolution, sensitivity, ability to multiplex and 639	
quantitate immunolabelled targets in a way that is often required for precision research (12). 640	
Meanwhile, commercial ‘all-in-one’ solutions, such as those employing fluorescence slide scanners 641	

or spinning disk confocal techniques, are (i) expensive, especially when highly capable confocal 642	
microscopes are already available at most research institutions and (ii) rely on software with the 643	

unenviable task of enabling the analysis of all conceivable tissue types. In our experience, this 644	
results in approximate per-cell measurements. In contrast, focussing in one field and interfacing 645	

different strategies (18), as we do here with the intestine, enables precision cell segmentation to be 646	
achieved and thus accurate analyses of cellular localisation, per-cell content and cell-cell 647	
interactions.  648	

 649	
Finally, some of the original, pioneering, work in quantitative, flow cytometry-type 650	

immunofluorescence analysis of tissues (e.g., histocytometry (1-3,16,17)) relies upon commercial 651	
software for implementation, limiting accessibility. Moreover, whilst the histocytometry approach 652	
utilises both 2-D and 3-D confocal images, analyses have primarily focussed on the spatial 653	

relationships of just the CD-marker delineated cells. Our approach, supported by machine learning 654	
segmentation where necessary, enables precision analyses of all cells and hence highly accurate 655	

cell counting and per-cell quantifications within an entire section or region-of-interest. 656	
Notwithstanding, here we focus on open-source, intestinal-specific 2-D delivery, as qualitative 657	
display in this format is today’s gold standard, and because volumetric (i.e., 3-D) 658	

immunofluorescence quantification is extremely challenging for routine usage, given the time 659	
requirements and increasing non-uniformities that manifest with imaging depth. With this in mind, 660	

the use of the confocal optical section provides 2-D immunofluorescence data that is consistently 661	
sampled, and thus well-suited for summation within cell-objects and for fair comparison across 662	
experimental samples. In turn, an important question for future work may involve addressing how far 663	

regular fluorescence images (i.e., non-confocal) can be taken towards producing similar, 664	
quantitative results. To this end, herein we show how per-cell data can be extracted from FFPE 665	
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sections through the use of WGA staining to delineate cell outlines. This approach may prove 666	

important to success with regular fluorescence microscopy because FFPE sections can be cut 667	
much thinner than cryostat sections, and this physical section thickness itself may enable reliable 668	
extraction of per-cell information.   669	

 670	
To conclude, here we have developed open, user-friendly methodology that delivers per-cell 671	

quantifications using routine, confocal microscopy-derived images of diverse gastrointestinal 672	
tissues. In combination, the presented approaches take the field of gastroenterology far beyond the 673	

representative image, and should now help to combat some of the data reproducibility issues that 674	
are associated with antibody technologies and over-reliance on qualitative tissue microscopy 675	
(36,37). 676	
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 831	

FIGURE LEGENDS 832	
Figure 1 - Open-source cell segmentation strategies for diverse intestinal tissues. A-D, 833	
Mouse villus mucosa frozen section. Here, we used a simple watershed approach that first defines 834	

the nucleus (gold, Hoechst 33342) of each cell, and then uses this as an anchor point from which to 835	
find each cell’s actin-delineated boundary (grey, actin-AF633). E-H, Human Peyer’s patch lymphoid 836	

tissue; formalin fixed paraffin embedded (FFPE) section. Exposure to alcohol during the FFPE 837	
process destroys the actin microfilaments (see Figure S3) so, instead, cell membranes were 838	

labelled using wheat germ agglutinin (WGA-AF633, blue). Watershed algorithms perform poorly in 839	
such densely-packed tissue types (shown, Figure S4), and so machine learning via the Ilastik 840	
software was instead used to produce probability maps of the cell outlines to enable segmentation 841	

(training shown in E, inset / process fully described, Figure S2). I- L, Rat mesenteric lymph node 842	
frozen section. Despite lower magnification and image resolution, the same machine learning 843	

based, Ilastik-CellProfiler process enables accurate cell segmentation. B/F/J - insets, Density 844	
plotting each cell’s nuclear and cell outline fluorescence provides a straightforward approach to 845	
‘gate out’ incorrectly segmented cell objects with abnormally high (e.g., doublets) or low (e.g., 846	

debris) signals. Example discarded events that lie outside of the indicated ‘single-cell population’ 847	
are indicated with gray squares on the tissue images. For all examples, segmentation accuracy 848	

scores are provided in Figure S5. Scale bars = 20 microns.  849	

 850	
Figure 2 - Conquering the representative image: E. coli passage into human control or IBD 851	

ileal mucosa. A-C, Mucosal tissue samples from the distal ileum of either a non-IBD cancer control 852	
patient (B) or an IBD patient (Crohn’s disease) (A and C) were maintained ex-vivo in Ussing 853	

chambers. The apical sides of the living tissues were exposed to either Krebs buffer (A) or GFP- 854	
expressing, adherent invasive E. coli strain LF82 (B/C) for 20 minutes. Images of the mucosa were 855	
then collected randomly across 6-8 frozen sections per tissue sample prior to per-cell analysis for 856	

anti-GFP fluorescence to identify LF82. D/E, Instead of relying on representative images, the image-857	
based cell profiling approach allowed quantification and display of all of the collected data (> 35,000 858	
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cells analysed in total). D, Concordance between the tissue samples taken per patient was 859	

observed (filled circles). Whilst the fluorescence distributions (lines represent averages) from the 860	
non IBD cancer control samples directly overlaid the Krebs buffer negative control (dashed line) 861	
suggesting no transmucosal uptake, the samples from the IBD patient all showed elevated 862	

fluorescence. E, Comparison between non-IBD and IBD groups for gated cells (indicated, D) with 863	
anti-GFP values greater than present in Krebs buffer control. (***) Indicates statistical significance at 864	

p < 0.001 (Wilcoxon rank sum). Scale bars: A-C = 10 µm.  865	

 866	

Figure 3 - Identifying intraepithelial T lymphocytes in large tilescans using a single CD 867	
marker. Rat jejunal longitudinal tissue section. A, First, anti-epithelial cell adhesion molecule 868	
(EPCAM) immunofluorescence labelling was used to delineate the epithelium (i.e., cells lying 869	

between the basement membrane and the apical enterocyte surface). B, As the anti-EPCAM 870	
antibody was raised in the same host species as the desired lymphocyte marker, the epithelium, 871	

lamina propria and lumen ‘compartments’ were directly-detected from the actin channel using pixel-872	
classification machine learning in Ilastik (process outlined in Figure S6). C, A 112-image confocal 873	
tilescan labelled for nuclei, actin and anti-CD3 was collected. Each individual field was segmented 874	

into individual cells, and a software function was developed to spatially reassemble the images, 875	
segmentation masks and cell positions (> 60,000 cells). D, A region-of-interest (ROI) was placed 876	

around the tissue region containing optimally cross-sectioned villi, and the Ilastik model was used to 877	

predict and mask the epithelium (Pink). D - inset, CD3+ cells inside or outside of this epithelial mask 878	
were then identified by gating against the secondary-only and isotype control per-cell fluorescence 879	
distributions (i.e., as is typical in flow cytometry). Cell centroid markers were placed on each positive 880	

event. This approach permitted sensitive and accurate pinpointing of CD3+ lymphocytes (C, inset). 881	
Scale bars: A/B = 25 µm; C = 50 µm; D = 1 mm.  882	

 883	

Figure 4 - Defining and counting T lymphocyte subpopulations on the basis of spatial 884	



	 33	

location. Rat jejenum, continued from Figure 3. A, To differentiate intraepithelial (IEL) CD3+ cells 885	

in close association with the apical side of the epithelium (i.e., ‘IELsub’) versus those truly in 886	

between enterocytes (i.e., ‘IELinter’), the epithelial mask defined in Figure 3 was skeletonised and 887	

dilated to form a central path enabling detection of IELinter cells in each ‘loop’ of epithelium (method 888	

shown, Figure S6). B/C, The CD3+ cell population was then split into three subpopulations: lamina 889	

propria CD3+ (LPCD3+), IELsub or IELinter, and locations were displayed by marker placement on 890	

each cell’s centroid. D/E, Typical examples of IELsub and IELinter events. F, Area measurements 891	
for the different tissue compartments. G, Total cell counts according to tissue compartment. H, 892	
Tissue compartment cell counts per 100 cells. I, Cell counts expressed as ratios between the 893	

different tissue compartments. Scale bars: A/C = 100 µm; B = 500 µm; D/E = 5 µm.  894	

 895	

Figure 5 - CD11c and CD3 expression in Peyer’s patches. Mouse ileal transverse section. A, 896	

The section was imaged as a 24- image tilescan labelled for nuclei, actin, anti-CD11c and anti-CD3. 897	
Transmitted and reflected light were also collected. B, The densely packed, lymphoid tissue 898	

segmented accurately into cells (~ 16,000) using the Ilastik/CellProfiler machine learning approach, 899	
and the software reassembly function spatially reassembled the data without artifacts at the overlap 900	
boundaries between the tiled images. C/D, The complexity of multichannel image (A) is dramatically 901	

reduced, using an example region-of-interest (yellow), and displaying the immunofluorescence 902	

markers (cyan = CD11c, magenta = CD3) on the segmented-cell outlines. E/F, CD3+ and CD11c+ 903	
cell populations were gated against secondary-only, leave-one-out and isotype control per-cell 904	

fluorescence distributions. In the densely packed tissue, a second sequential gate on fluorescence 905	
area per cell-object helped to reduce ‘bystander-positive’ events caused by fluorescence overlap 906	

into neighbouring cells (shown, F – inset) (further discussion/exemplification provided, Figure S8). 907	
F, Marker placement on the cell populations identified by the gating strategy in (E). Highly 908	
juxtaposed, and thus indicative of communication, CD11c-CD3 neighbouring cells (i.e., region 909	

shown in D) that consequentially identified positive in both gates are shown with white markers. 910	
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Scale bars: A/C/F = 500 µm; B = 250 µm; D = 50 µm.  911	

 912	

Figure 6 - Mapping CD11c+ and CD3+ cell interactions, expression and spatial 913	
congregations. Mouse ileum, continued from Figure 5. A, Cell-marker placement on the basis of 914	

immunofluorescence labelling. Highly juxtaposed CD11c-CD3 neighbouring cells that 915	
consequentially identified positive for both markers are shown with white markers. B, Flood-filling 916	
segmented cell objects provides a visually intuitive version of the data shown in (A) that can be 917	

displayed at a much smaller size. C, Here, the view shown in (B) is simplified to only show CD11c 918	
cells with touching CD3 nearest-cell neighbours, or juxtaposed cells that identify positive for both 919	

markers due to close spatial association. D/E, CD11c and CD3 expression maps with cell-objects 920	
coloured in four levels (i.e., dim, lo, intermediate (int), hi) according to each segmented cell’s level of 921	
immunofluorescence. F. Getis-Ord statistical map: this shows – as a probability heat map – where 922	

statistically significant congregations of cells are found relative to what would be expected by 923	
random chance given the frequencies of the different cell types. Scale bars: A-F = 500 µm. 924	














