958 research outputs found

    Quantitative analysis of bone reactions to relative motions at implant-bone interfaces

    Get PDF
    Connective soft tissues at the interface between implants and bone, such as in human joint replacements, can endanger the stability of the implant fixation. The potential of an implant to generate interface bone resorption and form soft tissue depends on many variables, including mechanical ones. These mechanical factors can be expressed in terms of relative motions between bone and implant at the interface or deformation of the interfacial material.\ud \ud The purpose of this investigation was to determine if interface debonding and subsequent relative interface motions can be responsible for interface degradation and soft tissue interposition as seen in experiments and clinical results. A finite element computer program was augmented with a mathematical description of interface debonding, dependent on interface stress criteria, and soft tissue interface interposition, dependent on relative interface motions. Three simplified models of orthopaedic implants were constructed: a cortical bone screw for fracture fixation plates, a femoral resurfacing prosthesis and a straight stem model, cemented in a bone. The predicted computer configurations were compared with clinical observations. The computer results showed how interface disruption and fibrous tissue interposition interrelate and possibly enhance each other, whereby a progressive development of the soft tissue layer can occur.\ud \ud Around the cortical bone screw, the predicted resorption patterns were relatively large directly under the screw head and showed a pivot point in the opposite cortex. The resurfacing cup model predicted some fibrous tissue formation under the medial and lateral cup rim, whereby the medial layer developed first because of higher initial interface stresses. The straight stem model predicted initial interface failure at the proximal parts. After proximal resorption and fibrous tissue interposition, the medial interface was completely disrupted and developed an interface layer. The distal and mid lateral side maintained within the strength criterion.\ud \ud Although the applied models were relatively simple, the results showed reasonable qualitative agreement with resorption patterns found in clinical studies concerning bone screws and the resurfacing cup. The hypothesis that interface debonding and subsequent relative (micro)motions could be responsible for bone resorption and fibrous tissue propagation is thereby sustained by the results

    Ethacrynic Acid Exhibits Selective Toxicity to Chronic Lymphocytic Leukemia Cells by Inhibition of the Wnt/β-Catenin Pathway

    Get PDF
    Aberrant activation of Wnt/β-catenin signaling promotes the development of several cancers. It has been demonstrated that the Wnt signaling pathway is activated in chronic lymphocytic leukemia (CLL) cells, and that uncontrolled Wnt/β-catenin signaling may contribute to the defect in apoptosis that characterizes this malignancy. Thus, the Wnt signaling pathway is an attractive candidate for developing targeted therapies for CLL. assays further confirmed the inhibitory effect of EA on Wnt/β-catenin signaling. Cell viability assays showed that EA selectively induced cell death in primary CLL cells. Exposure of CLL cells to EA decreased the expression of Wnt/β-catenin target genes, including LEF-1, cyclin D1 and fibronectin. Immune co-precipitation experiments demonstrated that EA could directly bind to LEF-1 protein and destabilize the LEF-1/β-catenin complex. N-acetyl-L-cysteine (NAC), which can react with the α, β-unsaturated ketone in EA, but not other anti-oxidants, prevented the drug's inhibition of Wnt/β-catenin activation and its ability to induce apoptosis in CLL cells.Our studies indicate that EA selectively suppresses CLL survival due to inhibition of Wnt/β-catenin signaling. Antagonizing Wnt signaling in CLL with EA or related drugs may represent an effective treatment of this disease

    Dynamics of intracellular mannan and cell wall folding in the drought responses of succulent <i>Aloe</i> species

    Get PDF
    Plants have evolved a multitude of adaptations to survive extreme conditions. Succulent plants have the capacity to tolerate periodically dry environments, due to their ability to retain water in a specialized tissue, termed hydrenchyma. Cell wall polysaccharides are important components of water storage in hydrenchyma cells. However, the role of the cell wall and its polysaccharide composition in relation to drought resistance of succulent plants are unknown. We investigate the drought response of leaf-succulent Aloe (Asphodelaceae) species using a combination of histological microscopy, quantification of water content, and comprehensive microarray polymer profiling. We observed a previously unreported mode of polysaccharide and cell wall structural dynamics triggered by water shortage. Microscopical analysis of the hydrenchyma cell walls revealed highly regular folding patterns indicative of predetermined cell wall mechanics in the remobilization of stored water and the possible role of homogalacturonan in this process. The in situ distribution of mannans in distinct intracellular compartments during drought, for storage, and apparent upregulation of pectins, imparting flexibility to the cell wall, facilitate elaborate cell wall folding during drought stress. We conclude that cell wall polysaccharide composition plays an important role in water storage and drought response in Aloe

    Mathematical modelling of polyamine metabolism in bloodstream-form trypanosoma brucei: An application to drug target identification

    Get PDF
    © 2013 Gu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThis article has been made available through the Brunel Open Access Publishing Fund.We present the first computational kinetic model of polyamine metabolism in bloodstream-form Trypanosoma brucei, the causative agent of human African trypanosomiasis. We systematically extracted the polyamine pathway from the complete metabolic network while still maintaining the predictive capability of the pathway. The kinetic model is constructed on the basis of information gleaned from the experimental biology literature and defined as a set of ordinary differential equations. We applied Michaelis-Menten kinetics featuring regulatory factors to describe enzymatic activities that are well defined. Uncharacterised enzyme kinetics were approximated and justified with available physiological properties of the system. Optimisation-based dynamic simulations were performed to train the model with experimental data and inconsistent predictions prompted an iterative procedure of model refinement. Good agreement between simulation results and measured data reported in various experimental conditions shows that the model has good applicability in spite of there being gaps in the required data. With this kinetic model, the relative importance of the individual pathway enzymes was assessed. We observed that, at low-to-moderate levels of inhibition, enzymes catalysing reactions of de novo AdoMet (MAT) and ornithine production (OrnPt) have more efficient inhibitory effect on total trypanothione content in comparison to other enzymes in the pathway. In our model, prozyme and TSHSyn (the production catalyst of total trypanothione) were also found to exhibit potent control on total trypanothione content but only when they were strongly inhibited. Different chemotherapeutic strategies against T. brucei were investigated using this model and interruption of polyamine synthesis via joint inhibition of MAT or OrnPt together with other polyamine enzymes was identified as an optimal therapeutic strategy.The work was carried out under a PhD programme partly funded by Prof. Ray Welland, School of Computing Science, University of Glasgo

    Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression

    Get PDF
    Endothelial Wnt/β-catenin signaling is necessary for angiogenesis of the central nervous system and blood–brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/β-catenin signaling and led to diminished tumor growth, reduced vascular density, and normalized vessels with increased mural cell attachment. These findings were corroborated in GL261 glioma cells intracranially transplanted in mice expressing dominant-active β-catenin specifically in the endothelium. Enforced endothelial β-catenin signaling restored BBB characteristics, whereas inhibition by Dkk1 (Dickkopf-1) had opposing effects. By overactivating the Wnt pathway, we induced the Wnt/β-catenin–Dll4/Notch signaling cascade in tumor endothelia, blocking an angiogenic and favoring a quiescent vascular phenotype, indicated by induction of stalk cell genes. We show that β-catenin transcriptional activity directly regulated endothelial expression of platelet-derived growth factor B (PDGF-B), leading to mural cell recruitment thereby contributing to vascular quiescence and barrier function. We propose that reinforced Wnt/β-catenin signaling leads to inhibition of angiogenesis with normalized and less permeable vessels, which might prove to be a valuable therapeutic target for antiangiogenic and edema glioma therapy

    A System-Wide Investigation of the Dynamics of Wnt Signaling Reveals Novel Phases of Transcriptional Regulation

    Get PDF
    Aberrant Wnt signaling has been implicated in a wide variety of cancers and many components of the Wnt signaling network have now been identified. Much less is known, however, about how these proteins are coordinately regulated. Here, a broad, quantitative, and dynamic study of Wnt3a-mediated stimulation of HEK 293 cells revealed two phases of transcriptional regulation: an early phase in which signaling antagonists were downregulated, providing positive feedback, and a later phase in which many of these same antagonists were upregulated, attenuating signaling. The dynamic expression profiles of several response genes, including MYC and CTBP1, correlated significantly with proliferation and migration (P<0.05). Additionally, their levels tracked with the tumorigenicity of colon cancer cell lines and they were significantly overexpressed in colorectal adenocarcinomas (P<0.05). Our data highlight CtBP1 as a transcription factor that contributes to positive feedback during the early phases of Wnt signaling and serves as a novel marker for colorectal cancer progression

    Radiofrequency ablation for Barrett's oesophagus related neoplasia with the 360 Express catheter: initial experience from the United Kingdom and Ireland—preliminary results

    Get PDF
    BACKGROUND: Radio-frequency ablation (RFA) for Barrett's oesophagus (BE)-related neoplasia is currently used after endoscopic resection of visible neoplasia. The HALO 360 balloon has been used to ablate long segment BE. The Barrx™ 360 Express RFA self-sizing catheter ('RFA Express') may potentially allow quicker ablation times and improved treatment outcomes. The aim of this paper is to present real world data on the use of the 360 Express Device. METHODS: Centres in the UK and Ireland submitted cases where the RFA Express was used. The primary outcome was regression of BE at 3 months. Secondary outcomes were the rate of symptomatic stricture formation and resolution of intestinal metaplasia (CR-IM) and dysplasia (CR-D) at End of Treatment (EoT). RESULTS: 11 centres submitted 123 consecutive patients. 112 had a follow up endoscopy. The median age was 67 years (IQR 62-75). 3 dosimetries were used. The mean reduction in Circumferential (C) length was 78% ± 36 and mean reduction in Maximal length (M) was 55% ± 36. 17 patients (15%) developed strictures requiring dilation. There was a higher rate of stricture formation when the 12 J energy was used (p < 0.05). 47 patients had EoT biopsies, 40 (85%) had CR-D and 34(76%) had CR-IM. CONCLUSIONS: The RFA 360 Express catheter shows reduction in length of baseline BE at 3 months after index treatment, and eradication of intestinal metaplasia and dysplasia at 12 months similar to other studies with earlier devices. It appears that the symptomatic stricture rate is slightly higher than previous series with the HALO 360 catheter. This study was performed as part of the HALO registry and has been approved by the Research Ethics Committee - MREC Number 08/H0714/27 Local project reference 08/0104 Project ID 15,033 IRAS Number 54678 EudraCT 2009-015980-1. Registered on ISRCTN as below: ISRCTN93069556. https://doi.org/10.1186/ISRCTN93069556

    Improvement over time in outcomes for patients undergoing endoscopic therapy for Barrett's oesophagus-related neoplasia: 6-year experience from the first 500 patients treated in the UK patient registry.

    Get PDF
    BACKGROUND: Barrett's oesophagus (BE) is a pre-malignant condition leading to oesophageal adenocarcinoma (OAC). Treatment of neoplasia at an early stage is desirable. Combined endoscopic mucosal resection (EMR) followed by radiofrequency ablation (RFA) is an alternative to surgery for patients with BE-related neoplasia. METHODS: We examined prospective data from the UK registry of patients undergoing RFA/EMR for BE-related neoplasia from 2008 to 2013. Before RFA, visible lesions were removed by EMR. Thereafter, patients had RFA 3-monthly until all BE was ablated or cancer developed (endpoints). End of treatment biopsies were recommended at around 12 months from first RFA treatment or when endpoints were reached. Outcomes for clearance of dysplasia (CR-D) and BE (CR-IM) at end of treatment were assessed over two time periods (2008-2010 and 2011-2013). Durability of successful treatment and progression to OAC were also evaluated. RESULTS: 508 patients have completed treatment. CR-D and CR-IM improved significantly between the former and later time periods, from 77% and 56% to 92% and 83%, respectively (p<0.0001). EMR for visible lesions prior to RFA increased from 48% to 60% (p=0.013). Rescue EMR after RFA decreased from 13% to 2% (p<0.0001). Progression to OAC at 12 months is not significantly different (3.6% vs 2.1%, p=0.51). CONCLUSIONS: Clinical outcomes for BE neoplasia have improved significantly over the past 6 years with improved lesion recognition and aggressive resection of visible lesions before RFA. Despite advances in technique, the rate of cancer progression remains 2-4% at 1 year in these high-risk patients. TRIAL REGISTRATION NUMBER: ISRCTN93069556
    corecore