2,196 research outputs found

    Numerical Simulations and Analysis of Thermally Excited Waves in Plasma Crystals

    Full text link
    A numerical model for a 2D-monolayer plasma crystal was established using the Box_tree code. Box_tree is a Barnes_Hut tree code which has proven effective in modeling systems composed of large numbers of particles. Thermally excited waves in this plasma crystal were numerically simulated and dispersion relations for both the longitudinal and transverse wave modes were found. These were compared with the dispersion relations extrapolated from experiment as well as a theory based on harmonic approximation. The results were found to agree with theoretical dispersion relations under different wave propagation directions with different particle charges and over a range of 0.9<k<5.Comment: 7 pages, Presented at COSPAR '0

    Impression Creep Behavior of Sn-3.5Ag-0.7Cu/Cu Brazed

    Get PDF
    AbstractBrazing, as one of the major connection technology, has been widely used in different areas such as aviation, aerospace, electronics and chemical industries etc. Sometimes creep fracture can be found in the brazed joints when they are used at high temperature. The conventional characterized method for creep properties cannot be used to study the brazed joints due to their small size. The impression technology has the potential to be used to study the creep properties of brazed joints, since no special requirements are needed for the size and shape of to-be-measured materials. In this investigation, Sn-3.5Ag-0.7Cu/Cu brazed joint is created and its creep properties is measured by impression creep testing. The effect of punching stress and temperature is studied on the impressing depth, which change from 70 to 100MPa and 80-130 oC, respectively. The microstructure of Sn-3.5Ag-0.7Cu/Cu is examined by Optical Microscope (OM), Scanning Electron Microscope (SEM) and Energy Dispersive Spectra (EDS). The results show that the impressing creep depth increases with the rise of temperature and punching stress. Creep resistance of the diffusion region has obvious effect on the creep resistance of the weld. The experimental results can provide the basis for the structural integrity analysis of brazed joints

    Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy

    Get PDF
    The goal of breast-conserving surgery is to completely remove all of the cancer. Currently, no intraoperative tools can microscopically analyze the entire lumpectomy specimen, which results in 20 to 60% of patients undergoing second surgeries to achieve clear margins. To address this critical need, we have laid the foundation for the development of a device that could allow accurate intraoperative margin assessment. We demonstrate that by taking advantage of the intrinsic optical contrast of breast tissue, photoacoustic microscopy (PAM) can achieve multilayered histology-like imaging of the tissue surface. The high correlation of the PAM images to the conventional histologic images allows rapid computations of diagnostic features such as nuclear size and packing density, potentially identifying small clusters of cancer cells. Because PAM does not require tissue processing or staining, it can be performed promptly and intraoperatively, enabling immediate directed re-excision and reducing the number of second surgeries

    Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance

    Get PDF
    Plate-like hydrated tungsten trioxide (3WO3·H 2O) films were grown on a fluorine doped tin oxide (FTO) coated transparent conductive substrate via an efficient, facile and template-free hydrothermal method. The film exhibited a fast coloration/bleaching response (tc90% = 4.3 s and tb90% = 1.4 s) and a high coloration efficiency (112.7 cm2 C-1), which were probably due to a large surface area

    Harmonically confined, semiflexible polymer in a channel: response to a stretching force and spatial distribution of the endpoints

    Full text link
    We consider an inextensible, semiflexible polymer or worm-like chain which is confined in the transverse direction by a parabolic potential and subject to a longitudinal force at the ends, so that the polymer is stretched out and backfolding is negligible. Simple analytic expressions for the partition function, valid in this regime, are obtained for chains of arbitrary length with a variety of boundary conditions at the ends. The spatial distribution of the end points or radial distribution function is also analyzed.Comment: 14 pages including figure

    Atomic-scale perspective on the origin of attractive step interactions on Si(113)

    Full text link
    Recent experiments have shown that steps on Si(113) surfaces self-organize into bunches due to a competition between long-range repulsive and short-range attractive interactions. Using empirical and tight-binding interatomic potentials, we investigate the physical origin of the short-range attraction, and report the formation and interaction energies of steps. We find that the short-range attraction between steps is due to the annihilation of force monopoles at their edges as they combine to form bunches. Our results for the strengths of the attractive interactions are consistent with the values determined from experimental studies on kinetics of faceting.Comment: 4 pages, 3 figures, to appear in Phys. Rev B, Rapid Communication

    Design, implementation, evaluation and application of a 32-channel radio frequency signal generator for thermal magnetic resonance based anti-cancer treatment

    Get PDF
    Thermal Magnetic Resonance (ThermalMR) leverages radio frequency (RF)-induced heating to examine the role of temperature in biological systems and disease. To advance RF heating with multi-channel RF antenna arrays and overcome the shortcomings of current RF signal sources, this work reports on a 32-channel modular signal generator (SG(PLL)). The SG(PLL) was designed around phase-locked loop (PLL) chips and a field-programmable gate array chip. To examine the system properties, switching/settling times, accuracy of RF power level and phase shifting were characterized. Electric field manipulation was successfully demonstrated in deionized water. RF heating was conducted in a phantom setup using self-grounded bow-tie RF antennae driven by the SG(PLL). Commercial signal generators limited to a lower number of RF channels were used for comparison. RF heating was evaluated with numerical temperature simulations and experimentally validated with MR thermometry. Numerical temperature simulations and heating experiments controlled by the SG(PLL) revealed the same RF interference patterns. Upon RF heating similar temperature changes across the phantom were observed for the SG(PLL) and for the commercial devices. To conclude, this work presents the first 32-channel modular signal source for RF heating. The large number of coherent RF channels, wide frequency range and accurate phase shift provided by the SG(PLL) form a technological basis for ThermalMR controlled hyperthermia anti-cancer treatment

    Mixtures of independent component analyzers for EEG prediction

    Full text link
    This paper presents a new application of independent component analysis mixture modeling (ICAMM) for prediction of electroencephalographic (EEG) signals. Demonstrations in prediction of missing EEG data in a working memory task using classic methods and an ICAMM-based algorithm are included. The performance of the methods is measured by using four error indicators: signal-to-interference (SIR) ratio, Kullback-Leibler divergence, correlation at lag zero and mean structural similarity index. The results show that the ICAMM-based algorithm outperforms the classical spherical splines method which is commonly used in EEG signal processing. Hence, the potential of using mixtures of independent component analyzers (ICAs) to improve prediction, as opposed on estimating only one ICA is demonstrated.This work has been supported by Generalitat Valenciana under grants PROMETEO/2010/040 and ISIC/2012/006Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L.; Gonzalez, A.; Vidal Maciá, AM. (2012). Mixtures of independent component analyzers for EEG prediction. En Green and smart technology with sensor applications. Springer Verlag (Germany). 338:328-335. doi:10.1007/978-3-642-35251-5_46S328335338Common, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, USA (2010)Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recognition 43(1), 69–85 (2010)Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1078–1089 (2000)Salazar, A., Vergara, L.: ICA mixtures applied to ultrasonic nondestructive classification of archaeological ceramics. Eurasip Journal on Advances in Signal Processing 2010, article ID 125201, 11 pages (2010), doi:10.1155/2010/125201Klein, C., Feige, B.: An independent component analysis (ICA) approach to the study of developmental differences in the saccadic contingent negative variation. Biological Psychology 70, 105–114 (2005)Makeig, S., Westerfield, M., Jung, T.P., Covington, J., Townsend, J., Sejnowski, T.J., Courchesne, E.: Functionally Independent Components of the Late Positive Event-Related Potential during Visual Spatial Attention. Journal of Neuroscience 19(7), 2665–2680 (1999)Wibral, M., Turi, G., Linden, D.E.J., Kaiser, J., Bledowski, C.: Decomposition of working memory-related scalp ERPs: Crossvalidation of fMRI-constrained source analysis and ICA. Internt J. of Psychol. 67, 200–211 (2008)Castellanos, N.P., Makarov, V.A.: Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods 158, 300–312 (2006)Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Processing 90, 2314–2318 (2010)Dayan, P., Abbot, L.F.: Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press (2001)Sternberg, S.: High-speed scanning in human memory. Science 153(3736), 652–654 (1966)Raghavachari, S., Lisman, J.E., Tully, M., Madsen, J.R., Bromfield, E.B., Kahana, M.J.: Theta oscillations in human cortex during a working-memory task: evidence for local generators. J. of Neurophys. 95, 1630–1638 (2006)Gorriz, J.M., Puntonet, C.G., Salmeron, G., Lang, E.W.: Time series prediction using ICA algorithms. In: Proc. of 2nd IEEE Internat. W. on Intellig Data Acquisition and Advanc. Comp. Systems: Tech. and App., pp. 226–230 (2003)Lin, C.-T., Cheng, W.-C., Liang, S.-F.: An On-line ICA-Mixture-Model-Based Self-Constructing Fuzzy Neural Network. IEEE Transactions on Circuits and Systems I: Regular Papers 52(1), 207–221 (2005)Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended InfoMax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation 11(2), 417–441 (1999)Perrin, F., Pernier, J., Bertrand, D., Echallier, J.F.: Spherical splines for scalp potential and current density matching. Electroencep. and Clin. Neurophys. 72, 184–187 (1989)Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004

    Electroproduction of the d* dibaryon

    Full text link
    The unpolarized cross section for the electroproduction of the isoscalar Jπ=3+J^\pi = 3^+ di-delta dibaryon d∗d^* is calculated for deuteron target using a simple picture of elastic electron-baryon scattering from the ΔΔ(7D1)\Delta \Delta (^7D_1) and the NN(3S1)NN (^3S_1) components of the deuteron. The calculated differential cross section at the electron lab energy of 1 GeV has the value of about 0.24 (0.05) nb/sr at the lab angle of 10∘^\circ (30∘^\circ) for the Bonn B potential when the dibaryon mass is taken to be 2.1 GeV. The cross section decreases rapidly with increasing dibaryon mass. A large calculated width of 40 MeV for d∗(ΔΔ7S3)d^*(\Delta\Delta ^7S_3) combined with a small experimental upper bound of 0.08 MeV for the d∗d^* decay width appears to have excluded any low-mass d∗d^* model containing a significant admixture of the ΔΔ(7S3)\Delta\Delta (^7S_3) configuration.Comment: 11 journal-style pages, 8 figure
    • …
    corecore