
Supplementary Materials 

Efficient synthesis of plate-like crystalline hydrated tungsten 
trioxide thin films with highly improved electrochromic 
performance 

Zhihui Jiao, a Xiu Wang,b Jinmin Wang, a Lin Ke, c Hilmi Volkan Demir d,e Tien Wei Koh, a and 
Xiao Wei Sun*a,f 

 

a School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang 

Avenue, Singapore 639798, Singapore. Fax: +65-67933318; Tel: +65-67905369; E-mail: 

exwsun@ntu.edu.sg, jiao0013@e.ntu.edu.sg 

b School of Materials Science and Engineering, Nanyang Technological University, Nanyang 

Avenue, Singapore 639798, Singapore 

c Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and 

Research), Research Link, Singapore 117602, Singapore 

d Department of Electrical and Electronics Engineering, Department of Physics, UNAM--

Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, Ankara 06800, 

Turkey 

e School of Electrical and Electronic Engineering, School of Physical and Mathematical 

Sciences, Nanyang Technological University Nanyang Avenue, Singapore 639798, Singapore 

f Department of Applied Physics, College of Science, and Tianjin Key Laboratory of  Low-

Dimensional Functional Material Physics and Fabrication Technology, Tianjin University, 

Tianjin 300072, China 

*To whom correspondence should be addressed. Email: exwsun@ntu.edu.sg 

 

 

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52932011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Experimental Section 

Preparation of Crystal Seeds Layers. Typically, 1.5 mL HCl solution was added into 15 mL 

0.03 g/L Na2WO4·2H2O solution. The formed yellowish precipitate was washed using de-ionized 

water in ice bath for several times and finally 50 mL mixture was obtained. Finally a WO3 seed 

sol was obtained after 2 mL H2O2 was added into the heated mixture under intense stirring. The 

sol was then spin coated onto pre-cleaned FTO glasses and the seed coating substrates were 

heated for application. 

Preparation of Precursor and Hydrothermal Treatment. Na2WO4·2H2O (1g) was 

dissolved into 15 mL of de-ionized water and then HCl (7 mL) was added into the solution. A 

100 mL mixture was finally obtained after the formed precipitate was washed using de-ionized 

water for many times. Under intensively stirring, H2O2 (3 mL) was added into the above heated 

suspension and a transparent solution was obtained. The solution was diluted to half 

concentration by de-ionized water and Na2SO4 (5×10-4 g/L) was added as the capping agent. A 

solution without adding Na2SO4 was prepared for comparison. The as-prepared solutions were 

transferred into autoclaves and then the WO3 seed coating substrates were put into autoclaves. 

The hydrothermal reactions were kept at 180oC for 2 h. The as-grown films were washed by de-

ionized water and dried in atmosphere.  

Characterization. The composition of as-prepared products were characterized by a Bruker 

D8 X-ray powder diffraction (XRD, Siemens), using Cu K(= 0.15406 nm) radiation. The 

phase structures were characterized by Raman spectroscopy (Renishaw inVia). X-ray 

photoelectron spectroscopy (XPS) data were obtained on a Kratos AXIS spectrometer with 

monochromatic Al-K� (1486.71 eV) X-ray radiation. Morphologies of the as-prepared thin 

films were observed by field-emission scanning electron microscopy (FESEM, JSM-6340). 
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High-resolution transmission electron microscope (HRTEM) images were obtained by a JEM-

2010 microscope with an accelerating voltage of 200 kV. Cyclic voltammetry and 

chronoamperometry datas of the films were measured by a three-electrode system (VersaSTAT 

3F Potentiostat/Galvanostat) with 0.5 M H2SO4 as the electrolyte, Pt as the counter electrode and 

Ag/AgCl/1M KCl as the reference electrode. The transmittance spectra were measured by a UV-

Vis spectrophotometer (JESCO V670). 

 

 

 

 

 

 

 

 

 

 

Figure S1. Raman spectra of the films. a: without Na2SO4. b: with Na2SO4. 

Fig. S1 displays a Raman spectrum of the 3WO3·H2O films. The bands at 680 and 807 cm-1 arise 

from the O-W-O stretching vibrations of the bridging oxygen atoms, the band at 260 cm-1 

belongs to W-O-W bending mode and the bands at 330 cm-1 and 924 cm-1 can be assigned to the 

stretching of W-OH2 and W=O, respectively.1, 2 
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Figure S2. Wide scanning XPS spectra of the as-fabricated nanoplate films. 

Fig. S2 shows the wide scanning XPS spectra of the nanoplate films. The binding energies of 

the sample were corrected using a value of 284.6 eV for the C 1s peak of carbon. All the peaks 

appeared in the spectra can be well indexed to be W and O elements. There is no contaminated 

element except C in the film. And it is well known that such adventitious carbon layer is usually 

formed for the samples exposed in the air.  The above result implies the high purity of the as-

grown nanoplate films. 
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Figure S3. A schematic illustration of the formation process for 3WO3·H2O films grown with 

and without Na2SO4. 

The precipitation of WO3 from the WO4
2- containing solution and the growth mechanism of 

the plate-like nanostructured film can be explained according to the following well known 

reactions:  

 

 

 

 

 

H2WO4 precipitate was formed after addition of HCl solution. Then it was dissolved by adding 

hydrogen peroxide (H2O2) and peroxopolytungstic acid (PTA) was obtained. A layer of 

WO3·1/3H2O crystal nucleus was formed from the decomposition temperature of PTA at high 

temperature, and the seed-coating substrate acted as nucleation and growth sites. The plate-like 

nanostructures were grown eventually from the WO3·1/3H2O nucleus under the capping agent of 

Na2SO4, while stacked brick-like films were obtained. Fig. S3 schematically illustrates the 

formation process of plate-like and stacked brick-like 3WO3·H2O films grown with and without 

Na2SO4. 

  

 

 

 

 

Na2WO4 + 2HCl → H2WO4↓+ 2NaCl                                   (1) 

H2WO4 + xH2O2 → WO3·xH2O2·H2O (Peroxopolytungstic acid)                (2) 

WO3·xH2O2·H2O →WO3·1/3H2O (nucleus) + (x+2/3) H2O + x/2 O2↑           (3) 

WO3·1/3H2O (nucleus) →WO3·1/3H2O (nanoplate) (capping agent: Na2SO4)     (4) 
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Figure S4.  (a) and (b) CV curves of the films grown with and without Na2SO4 after the 1st, 

1500th and 3000th cycles, measured in 0.5M H2SO4 solution at a scan rate of 0.1 V/s, 

respectively.  
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Fig. S4 (a) and (b) show the CV curves of the films grown with and without Na2SO4 after the 

1st, 1500th and 3000th cycles, respectively. It can be seen that the nanoplate film shows good 

cyclic stability even in the acidic solution, since there is no significant change in the shape of the 

CVs, only a small reduction was observed after 3000 cycles. On the other hand, a larger current 

reduction was observed for the nanobrick film, indicating an inferior stability. 

 

 

 

 

 

 

 

Figure S5. UV-vis transmittance spectra of the plate-like 3WO3·H2O film based EC device 

under 0, -0.1, -0.2 and -0.3 V, respectively. 

Tunable transmittance could be obtained for the nanoplate film under -0.1, -0.2 and -0.3 V in 

0.5 M H2SO4 solution (Fig. S5). With increased negative bias voltage, more H+ will be inserted 

into the film and the color of the film will become deeper, leading to the decrease of optical 

transmittance above 460 nm and a blue shift of the peak transmittance from 884 to 802, 703 and 

675 nm, respectively. 
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Figure S6. Photographs of the EC device made up of the nanoplate 3WO3·H2O film under 0, -

0.1, -0.2 and -0.3 V, respectively.   

Photographs of EC device made up with the nanoplate film grown with Na2SO4 under 0, -0.1, 

-0.2 and -0.3 V are shown in Fig. S6, depicting a high contrast between bleached and colored 

state which leads to the obvious transparency changes. With increased negative bias, the device 

shows a deeper blue color, leading to a larger optical regulation between bleached and colored 

state. 
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Figure S7. Switching properties of the nanoplate film under ± 0.1 V and ± 0.2 V at 632.8 nm. 

Fig. S7 shows the switching response of the nanoplate film under ± 0.1 V and ± 0.2 V at 

632.8 nm. When ± 0.1 V was applied, coloration time tc and bleaching time tb are found to be 9.2 

s and 1.3 s respectively, while they are 18 s and 1 s respectively under ± 0.2 V bias. Reverse 

trend for coloration and bleaching speed is obtained when increasing the bias from ± 0.1 V to ± 

0.3 V. And smaller optical modulations were found under these biases. 
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Table S1. Data for WO3 film-based electrochromic devices found in the literature showing 

modulation range, the performed numbers of cyclic cycles, the switching time for coloration and 

bleaching and coloration efficiency. 

 

 

 

 

 

 

 

Assembling techniques  Optical regulation Cycles 
Coloration time 

(tc) 
Bleaching time 

(tb) 

Coloration 
efficiency 
(CE: cm2/C) 

Nanoparticle film by 
hot-wire chemical 
vapor deposition [3]. 
 
Nanorod film by 
colloidal and spin-
coating [4]. 
 

 
 
 
 
∆Abs (700 nm)=0.99 

 
3000 
 
 
300 

 
 
 
 
tc = 6.4 s 

 
 
 
 
tb = 3.0 s 

 
42 (670 nm) 
 
 
132 (700 nm) 

Nanowire array film 
by hydrothermal [5]. 

∆T (633 nm)≈57% 1000 tc,90% = 7.6 s tb,90%= 4.2 s 102.8 (633 nm) 

      
Fibrous reticulated 
film by spray pyrolysis 
[6]. 
 
Mesoporous film by 
electrodeposition [7]. 

∆T (630 nm)≈10% 
 
 
 
∆T (632.8 nm)=71% 

 
 
 
 
1000 

tc = 5.5 s 
 
 
 
tc,90% = 8.9 s 

tb = 3.8 s 
 
 
 
tb,90%= 4.5 s 

34 (630 nm) 
 
 
 
70 (632.8 nm) 

      
Nanoparticle film by 
dip coating [8]. 
 
Nanoparticle film by 
spin-coating [8]. 
 
Amorphous film by 
oxygen sputtering [9]. 

∆T (632.8 nm)=74% 
 
 
∆T (632.8 nm) =62% 
 
 
∆T (550  nm) ≈75% 

1500 
 
 
1500 

tc = 111 s  
 
 
tc = 115 s 
 
 
tc,84% = 32 s 

tb = 55 s 
 
 
tb = 43 s 
 
 
tb,84% = 8 s 

73.6 (630 nm) 
 
 
51.1 (632.8 nm) 
 
 
141 (550 nm) 

      
Nanowire film by 
thermal evaporation 
[10]. 

∆T (700 nm) ≈ 65% 
 

  tc,80% = 3.0 s tb,80% =1.5 s  61.3 (700 nm)
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