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A B S T R A C T

Leaf traits and subsequently leaf spectral properties depend on the leaf phenological stage and light conditions
within a canopy. The PROSPECT radiative transfer model has been extensively and successfully used to retrieve
leaf traits for mature, sunlit leaves at peak vegetation growth, i.e. summer. However, research on the quanti-
fication of leaf traits using PROSPECT across the canopy vertical profile throughout the growing season is still
lacking. Therefore, this study aims at examining the effect of leaf position on the performance of the PROSPECT
model in modelling leaf optical properties and retrieving leaf chlorophyll content (Cab), equivalent water
thickness (EWT), and leaf mass per area (LMA) throughout the growing season. To achieve this objective, we
collected 588 leaf samples from the upper and lower canopies of deciduous stands over three seasons (i.e.,
spring, summer and autumn) in Bavaria Forest National Park, Germany. Leaf traits including Cab, EWT and LMA,
were measured for all the samples, and their reflectance spectra were obtained using an ASD FieldSpec-3 Pro FR
spectroradiometer coupled with an Integrating Sphere. We initially assessed the performance of the PROSPECT
model by comparing reflectance spectra generated in forward mode against reflectance spectra measured on leaf
samples collected in the field. We subsequently inverted the PROSPECT model to retrieve Cab, EWT and LMA
using the look-up-table (LUT) approach. Our results consistently demonstrated that the measured reflectance of
leaf samples collected from the lower canopy had a stronger match with PROSPECT simulated reflectance
spectra, especially in the NIR spectrum compared to leaf samples collected from the upper canopy throughout
the growing season. This observation concurred with the pattern of Cab and EWT retrieval accuracies across the
canopy i.e. the retrieval accuracy for the lower canopy was consistently higher (NRMSE=0.1-0.2 for Cab;
NRMSE=0.125-0.16 for EWT) when compared to the upper canopy (NRMSE=0.122 - 0.269 for Cab;
NRMSE=0.162 -0.0.258 for EWT) across all seasons. In contrast, LMA retrieval accuracies for the upper canopy
(NRMSE=0.146 - 0.184) were higher compared to the lower canopy (NRMSE=0.162 - 0.239) for all seasons
except for the spring season. For all the leaf traits examined in this study, the range in retrieval accuracy between
the upper and lower canopy was greater in summer (compared to other seasons). We report for the first time that
although the PROSPECT model provides reasonable retrieval accuracy of Cab, EWT and LMA, variations in leaf
biochemistry and morphology through the vertical canopy profile affects the performance of the model over the
growing season. Findings of this study have important implications on field sampling protocols and upscaling
leaf traits to canopy and landscape level using multi-layered physical models coupled with PROSPECT.

1. Introduction

Plant traits, such as leaf chlorophyll content (Cab), leaf mass per area
(LMA) and equivalent water thickness (EWT) play an important role in
understanding ecosystem functional processes, such as primary

productivity and nutrient cycling. Specifically, Cab is a key bio-indicator
of plant health and photosynthetic capacity (Evans and Poorter, 2001;
Lichtenthaler et al., 1996), while LMA reflects the plant economic
spectrum strategy with regard to nutrients uptake, light harvesting and
carbon sequestration (Poorter et al., 2009). EWT, on the other hand,
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provides information on plant water status (Yao et al., 2014). Conse-
quently, routine measurement of leaf traits is valuable to assess pro-
gress towards the Aichi Biodiversity Targets set by the Convention on
Biological Diversity (CBD) (Pereira et al., 2013; Skidmore et al., 2015).
Leaf traits and their leaf spectral properties are strongly controlled

by leaf phenological stage and light conditions within a canopy (Yang
et al., 2016). Leaf traits are known to change as a function of time
during the growing season within a year (Behrman et al., 2015).
Moreover, changes in abiotic factors, such as temperature, rainfall and
photo-period result in changes in the leaf physiological, biochemical
and morphological traits (Coble et al., 2016). However, leaf traits do
not only exhibit seasonal changes but also changes as a result of dif-
ferent light conditions such as between the sunlit, upper and shaded
lower canopy (Gara et al., 2018a). Illuminated upper canopy leaves
display higher nutrient stoichiometry when compared to shaded lower
canopy leaves (Weerasinghe et al., 2014). For example, Yang et al.
(2016) demonstrated that shaded leaves display lower Cab, nitrogen and
LMA when compared to sunlit leaves. The variation in leaf traits across
the canopy vertical profile is important in maintaining an equilibrium
between the ribulose-1.5-bisphosphate (RuBP) - rate of carboxylation
and the electron transport - limited rate of carboxylation (Chen et al.,
1993). These intrinsic mechanisms result in marked effects on leaf
morphological, chemical as well as physiological traits across the ca-
nopy vertical profile and subsequently result in variations in leaf optical
properties (Qiu et al., 2018). Plants are also known to translocate foliar
nutrients as they age, moving nutrients from lower canopy leaves to the
upper canopy leaves for protein repair and maintenance of a metabolic
balance (Hikosaka, 2005). In this regard, capturing seasonal variations
in leaf traits throughout the vertical canopy profile is critical for un-
derstanding dynamics in terrestrial ecosystem structure and func-
tioning.
Several leaf traits databases aimed at improving our understanding

of forest structure and functioning have been established based on in
situ and in vivo trait measurements (Kattge et al., 2011; Poschlod et al.,
2003). Although these conventional methods provide accurate mea-
surements, they are expensive, time-consuming and particularly chal-
lenging for quick and repeated measurements. Field spectroscopy, on
the other hand, has a capacity to augment conventional methods by
indirectly retrieving leaf traits from spectral measurements (Carvalho
et al., 2013). This approach is cost-effective and allows repeated as-
sessments over time with a capacity to upscale to airborne and satellite
imagery. Essentially two approaches, empirical (statistical) and phy-
sical models (radiative transfer models-RTM) are employed to establish
a relationship between leaf traits and spectral measurements (Verrelst
et al., 2015). Empirical models explore the parametric and non-para-
metric statistical relationship between leaf traits and vegetation spectra
or derivatives such as vegetation indices (Darvishzadeh et al., 2012).
Although statistical models are relatively easy to calibrate, they are
difficult to transfer because in most instances the spectra-trait re-
lationship is sensor, site, time, and biome dependent (Verrelst et al.,
2014). Moreover the performance of statistical models can be affected
by the representativeness of the set of reference samples used for cali-
bration (Pasolli et al., 2015). The development of physical models or
radiative transfer models (RTMs) on the other hand, has improved our
understanding of the interaction between radiation and foliage mate-
rial. Physical models, rigorously simulate light absorption and scat-
tering based on radiation transfer theory and are thus transferable
across sites and biomes (Homolová et al., 2013). However, the main
challenge of physical models is that they often require a number of
inputs for parameterization, which subsequently result in computation
and model inversion sophistication (Zhang and Wang, 2015).
A number of RTMs have been developed to model leaf spectral

properties and subsequently retrieve leaf traits through inversion. These
models include PROSPECT (PROpriétés SPECTrales) (Feret et al., 2008;
Jacquemoud and Baret, 1990; Jacquemoud et al., 1996), LIBERTY (Leaf
Incorporating Biochemistry Exhibiting Reflectance and Transmittance

Yields) (Dawson et al., 1998), N flux models (Allen and Richardson,
1968), ray tracing models (Govaerts and Verstraete, 1998) and sto-
chastic models (Maier et al., 1999). Most of these physical models,
except PROSPECT, have received relatively limited use within the ve-
getation spectroscopy community. This is mainly because they require a
large number of input variables that are laborious and time consuming
to measure and subsequently pose a challenge in model inversion. The
PROSPECT model has been widely used to retrieve leaf traits from si-
mulated hemispherical reflectance and transmittance spectra in dif-
ferent vegetation communities (Malenovský et al., 2006; Renzullo et al.,
2006; Zhang et al., 2007; Barry et al., 2009). One advantage of the
PROSPECT model is that it can be intricately coupled with canopy ra-
diative models, such as SAILH to retrieve leaf traits at canopy and
landscape level (Verhoef, 1984; Si et al., 2012; Tripathi et al., 2012). In
spite of its popularity, robustness and transferability, studies that have
examined the effect of leaf position on the performance of PROSPECT in
modelling leaf spectral properties and retrieval of leaf traits throughout
the growing season are lacking. Although an attempt to retrieve Cab
through the vertical canopy profile using the PROSPECT model was
demonstrated by Demarez (1999) and Zhang et al. (2007), very little is
known on how the PROSPECT model performs with regard to retrieval
of other key radiation absorbers, i.e. LMA and EWT across the canopy
and throughout the growing season. More specifically, no study has
attempted to evaluate the effect of leaf position within a canopy on the
modelling of leaf spectral properties across a growing season using
PROSPECT. Previous studies have mainly focused on the retrieval of
leaf traits for mature, sunlit leaves at peak vegetation growth, i.e.
summer (Ali et al., 2016; Wang et al., 2015b). Therefore, this study
sought to examine the effect of leaf position within a canopy on the
performance of the PROSPECT model in modelling leaf optical prop-
erties and retrieval of leaf traits, specifically chlorophyll content (Cab),
equivalent water thickness (EWT) and leaf mass per area (LMA) across
throughout the growing season.

2. Materials and methods

2.1. Study area and field data collection

To examine the effect of leaf position within a canopy on the per-
formance of PROSPECT for modelling leaf spectral properties and re-
trieval of leaf traits across the canopy throughout the growing season,
we collected leaf samples from Bavarian Forest National Park (Fig. 1).
The Park is part of the Bohemian forest ecosystem and is located in
south-eastern Germany (49ᴼ31′19″N and 13ᴼ12′9″N). The Park covers a
total area of approximately 24 218 ha. Elevation stretches from 600 to
1453m (Heurich et al., 2010). The climate is temperate with annual
precipitation ranging from 1200 to 1800mm (of which approximately
50% is snow), and a mean annual temperature of between 3 and 6ᴼ C.
The Park is characterized by acidic and poor nutrient soil. The domi-
nated tree species in the park are mainly the evergreen Norway spruce
(Picea abies) (67%) and deciduous European beech (Fagus sylvatica)
(24.5%). Other less dominant species include white fir (Abies abies)
(2.6%), sycamore maple (Acer pseudoplatanus) (1.2%), and mountain
ash (Sorbus aucuparia) (3.1%) (Cailleret et al., 2014).
Field data were collected for three seasons, i.e. spring, summer and

autumn of 2017. Spring data were collected between mid-May and mid-
June, while summer field data were collected from mid-July to mid-
August, and the autumn field data were collected between mid-
September and mid-October. Sampling sites were randomly generated
in deciduous and mixed vegetation stands based on the vegetation map
provided by the Department of Conservation and Research, Bavarian
Forest National Park (Silveyra Gonzalez et al., 2018). Most of the
sample plots were located along the permanent transects designed for
Biodiversity Research (Fig. 1). In the field, we used a hand-held Global
Positioning System with an error of± 5m to navigate to the sampling
sites. At each sampling site, a north-oriented plot of 30m×30m was
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demarcated using a tape measure. We also recorded the centre location
of each plot, using a Leica GPS 1200 (at an accuracy of less than 1m
after post-processing).
In total 588 leaf samples were collected from twenty-six deciduous

and mixed vegetation sample plots across the three seasons. Species
name and sample sizes for each season are shown in Table 1. Leaf
samples were separately collected from the upper (n=294) and lower
canopy (n=294) of each sampled tree. The average height of sampled
trees was 24.4 ± 7.52m (measured using a Nikon Forestry 550 hyps-
ometer). Leaf samples from the sunlit, upper canopy were shot from the
top one meter canopy using a crossbow, whilst leaf samples from the
lower canopy were collected from the shaded, lowest living branch of
the canopy using an extendable pair of secateurs (Atherton et al., 2017;
Arellano et al., 2017). Sampling was performed on three to five trees
with a diameter at breast height greater than 10 cm. A marker was

placed on each sampled tree to facilitate tree identification for sub-
sequent seasonal field measurements. Collected leaf samples were im-
mediately measured for Cab, using CCM -300 chlorophyll content meter
(Opti-Sciences, 2011). The leaf samples were then wrapped with moist
paper towels and zip-locked in polythene bags. The leaf samples were
then transported in a cooler with ice packs within 6 h to the laboratory
for further measurements (Atherton et al., 2017). Although the com-
position of our samples were heavily skewed to the European beech
(92.86%), analysis with or without the other collected species (con-
stituting 7.14%) did not alter the pattern in leaf traits retrieval accuracy
across the canopy throughout the growing season (Appendix 1: Table
A1). Therefore, all analyses were performed including all the species.

2.2. Laboratory measurement

2.2.1. Leaf trait measurements
The following leaf traits were measured in the laboratory; fresh

weight (Fw g), dry weight (Dw g) and leaf surface area (LA). Fresh
weight for each sample was determined, using a high precision digital
scale at an accuracy of 0.01 g. The leaf samples were then scanned,
using AMH 350 area meter to determine the leaf surface area (ADC-
BioScientific, 2013). The leaf samples were oven dried at 65ᴼC until a
constant weight was attained after approximately 72 h, and then their
dry weight was measured (Gara et al., 2018b). Subsequently, EWT and
LMA were calculated using the following formula:

Fig. 1. Map of the Bavaria Forest National park and the location of the park in Germany. Sampling points are overlaid on a natural colour composite of Sentinel-2
satellite imagery of 13 July 2017. Black lines are the permanent flying transects boundaries designed for biodiversity research.

Table 1
Distribution of collected samples by species across the three seasons.

Species Scientific name Spring Summer Autumn Total

European beech Fagus sylvatica 156 194 196 546
Sycamore maple Acer pseudoplatanus 6 12 12 30
Elm spp Ulmus minor 2 2 2 6
Common rowan Sorbus aucuparia 2 2 2 6
Total 166 210 212 588
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EWT (cm) = Fw−Dw/LA (1)

LMA (g/cm2) = Fw /LA (2)

where: Dw, Fw and LA are the dry weight, fresh weight and leaf area of
each sample, respectively. The summary and variation of measured
traits are shown in Fig. 2.

2.2.2. Leaf reflectance spectra measurement
Leaf directional hemispherical reflectance from 350 to 2500 nm for

each sample was measured, using an ASD FieldSpec-3 Pro FR spectro-
radiometer coupled with an ASD RTS-3ZC Integrating Sphere. To
minimize spectral noise, the spectroradiometer was set to average two
hundred scans into a single spectrum per each spectral measurement
(Ali et al., 2016). Radiance measurements were converted to re-
flectance against scans of a calibrated white spectralon panel (with
approximately 99% reflectance). During spectral measurements, care
was taken to avoid leaf primary veins. The spectral reflectance mea-
surements were corrected for dark current and stray light following the
Integrating Sphere User Manual instructions (ASD, 2008). Spectral
measurements of 5–10 leaves (depending on leaf size and weight)
constituting a sample were averaged to a single spectrum to represent
the sample. A moving second order Savitzky-Golay filter with a frame
size of 11 was applied to each sample reflectance spectra to minimize
instrument noise (Savitzky and Golay, 1964). Due to the low signal-to-
noise ratio for wavelengths beyond 2200 nm as well as spectral bands
before 400 nm, the reflectance spectra were cropped to 400–2200 nm
range. Therefore, 1801 spectral bands were retained for further ana-
lysis. All required laboratory measurements were completed on the

same day of sample collection.

2.3. Calibration of the PROSPECT model

The PROSPECT leaf optical properties model is a popularly used
radiative transfer plate model for simulating leaf directional-hemi-
spherical reflectance over the optical domain of 400–2500 nm
(Jacquemoud and Baret, 1990). The model is widely used mainly be-
cause of its robustness, ease-of-use, availability and a reasonably low
number of input parameters (Verrelst and Rivera, 2017). The PROSP-
ECT model idealizes a leaf as elementary layers characterized by ab-
sorbing and scattering properties (Feret et al., 2008). The model re-
quires four input parameters including leaf structure index (Nstruc), leaf
chlorophyll content (Cab, μg/cm2), leaf water content (EWT, cm) and
leaf dry matter content (LMA, g/cm2). PROSPECT has been widely
validated for the retrieval of leaf traits across a variety of species
especially for mature, sunlit leaf samples at peak vegetation growth, i.e.
summer (Li and Wang, 2013; Malenovský et al., 2006; Ali et al., 2016;
Wang et al., 2015a). However, in this study, we assess the effect of leaf
position in the vertical canopy profile on the performance of PROSPECT
for modelling leaf spectral properties and retrieval of leaf traits across
canopy positions through a growing season. To achieved a higher ac-
curacy in the retrieval of inputs parameters the dimension of the LUT
has to be sufficiently large (Combal et al., 2003; Tang et al., 2007). We
therefore used the improved (1 nm) and recalibrated PROSPECT 4
model (Feret et al., 2008) in forward mode to generate a LUT with 250
000 leaf spectral reflectance simulations. We used PROSPECT 4 instead
of later versions because we did not measure leaf carotenoid and

Fig. 2. Seasonal variation in measured Cab, LMA and EWT across canopy positions (UC and LC represent upper and lower canopy respectively).
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anthocyanins content, which are input parameters in PROSPECT 5 and
PROSPECT D (Féret et al., 2017; Feret et al., 2008). The ranges of the
PROSPECT input variables (Table 2) were selected guided by prior in-
formation gathered from field-collected data. Specifically, the range of
input parameters used for PROSPECT calibration were based on field
collected data widened by 10% of their respective means. In order to
preserve a strong relationship that existed between field-measured LMA
and EWT (r= 0.66, p=0.00, Fig. 3), the PROSPECT model was run by
generating input variables (LMA and EWT) using a multivariate normal
distribution function based on the mean and covariance matrix of their
field measured values. For the N structure index, we used the same
range presented by Ali et al. (2016) who retrieved N for similar species
in the same study area. It is often a prerequisite to calibrate the physical
and optical constants, such as refractive index and absorption coeffi-
cients of the PROSPECT model to the target experimental data. How-
ever, in this study, we validated the suitability of the original PROSP-
ECT model to simulate field measured reflectance spectra by computing
the RMSE between measured and simulated reflectance spectra gener-
ated in forward mode. The generated RMSE (Fig. 5a) was generally
lower than reported in the literature (Feret et al., 2008; Sun et al.,
2018). Therefore, we used the PROSPECT model without re-calibrating
the physical and optical constants (Ali et al., 2016).

2.3.1. Inversion of the PROSPECT model
There are a number of inversion approaches that can be used to

assess the performance of RTMs in modelling leaf spectral reflectance
and retrieving leaf traits. The main inversion methods are iterative
optimization, neural networks and look-up table (LUT) (Sun et al.,
2018; Wang et al., 2015a). Optimization algorithms and neural net-
works search for the ‘best fit’ between measured and simulated spectra
by successive input variable iteration (Verrelst et al., 2015). The overall
performance of optimization algorithms depends on the initial guess
(Preidl and Doktor, 2011). The main challenge with optimization al-
gorithms is that they computationally demanding and time-consuming
when inverting large look-up tables. The LUT inversion approach on
other hand is based on querying the LUT using a merit function (Liang,
2007). The function essentially minimize the summed difference

between measured and simulated spectra across the selected wave-
length. The LUT approach has an advantage over other inversion
methods because it is computationally efficient and guarantee finding
global minima (Rivera et al., 2013, Sehgal et al., 2016). Previous stu-
dies have also demonstrated that the inversion technique has a minor
influence on the inversion results (Buddenbaum and Hill, 2015; Kimes
et al., 2000). The main factors that influence the performance of model
inversion are the spectral range considered for target constituent and
the signal to noise ratio of the spectra (Feret et al., 2008). In this study,
we therefore used the widely used LUT approach to assess the perfor-
mance of the PROSPECT model inversion in retrieving of leaf traits. The
best match between simulated spectra to each measured reflectance
spectra is determined by calculating and finding the lowest root mean
square error (Eqn 3) of the unconstrained non-linear multivariate
function (Darvishzadeh et al., 2012). In practice, model inversion in-
volves finding the parameter vector θ = [N, Cab, LMA, EWT] that
minimizes the merit function J (θ).

=J
n

( )
( )mes sim

2

(3)

Where mes and sim are measured and simulated spectral reflectance
respectively, n is the number of wavelengths (λ) i.e. 1801 used in this
study. The selection of single best fitting spectra may not be the optimal
strategy of inverting the LUT as this is prone to ill-poseness
(Darvishzadeh et al., 2012, 2019). In this study, we observed that using
a single best fitting spectral or multiple solutions (i.e. mean of the best
10, 50 and 100 solutions) did not affect the pattern of leaf traits re-
trieval accuracy (Appendix 1: Figs A1–A3).

2.3.2. Assessing the performance of the PROSPECT model in forward mode
To assess the performance of the PROSPECT model in simulating

leaf spectral reflectance of leaf samples collected at different canopy
positions, we examined the agreement between simulated reflectance
spectra generated by the PROSPECT in forward mode against the re-
flectance spectra measured for the samples collected in the field using
the root mean square error (RMSE). For this, we used the leaf traits
content (Cab, EWT and LMA) measured in the field for each sample to
generate reflectance spectra (Feret et al., 2008). We initially used the N
structure range presented by Ali et al. (2016) who retrieved N for si-
milar tree species. We then inversely retrieved N to run the PROSPECT
model in forward mode. The simulated spectra for each sample was
then compared with the corresponding measured spectra using the
RMSE for the lower and upper canopy across the growing season.

2.3.3. Assessing the retrieval of leaf traits through PROSPECT model
inversion
The accuracy of retrieval of leaf traits across canopy and seasons

were assessed by inverting the 250 000 LUT generated from the PRO-
SPECT model as described in section 2.3.1. Specifically, we compared
leaf traits retrieved from the PROSPECT model against the field-mea-
sured ones using the coefficient of determination (R2), RMSE and nor-
malized root mean square error (NRMSE=RMSE/range).

3. Results

3.1. PROSPECT performance in reflectance spectra simulation across
canopy positions throughout the growing season

The effect of leaf position on the performance of the PROSPECT
model was initially evaluated based on the agreement between simu-
lated (generated in forward mode) and measured reflectance spectra.
Generally, the PROSPECT model generated reflectance spectra that
closely matched the measured spectra for both the upper and lower
canopy across all seasons and throughout the entire spectrum (Fig. 4).
However, some variation were observed, for example, there were

Table 2
Ranges of the leaf variables used to build the LUT with the size of 250 000-
reflectance spectra.

Parameter unit min max mean SD

Leaf structure parameter (N) – 1 2.22 1.52 0.15
Total leaf chlorophyll content (Cab) μg/cm2 2 67 36.57 10.6
Equivalent water thickness (Cw) cm 0.0025 0.015 0.0015 0.0066
Leaf mass per area (Cm) g/cm2 0.0015 0.014 0.0016 0.0053

Fig. 3. Correlation between EWT and LMA for field-collected data.

T.W. Gara, et al. Int J Appl  Earth Obs Geoinformation 83 (2019) 101919

5



relatively higher peaks of spectra mismatch in wavelengths 490–530,
700–789 and 1500–1680 and 1880–1895 nm for the pooled dataset
(Fig. 5 a). Across seasons and canopy positions, the peak in the
490–530 nm spectrum was observed for the autumn dataset. The RMSE
peak in the ‘red-edge’ spectrum remains prominent for all the three
seasons, with the highest RMSE observed for spring followed by
summer and then autumn seasons. High errors in the 1500-to-1680 nm
wavelengths were observed across all seasons. The RMSE in the NIR
were lowest in autumn and highest in spring (Fig. 5b). The lower ca-
nopy demonstrated a better match between simulated and measured
reflectance spectra compared to the upper canopy, especially in the NIR
(800–1300 nm; Fig. 4, Fig. 5c) and SWIR across all seasons (Fig. 5d-f).
Spectral disagreement in the ‘red edge’ between the upper and lower
canopy was higher in the spring (Fig. 5d) and summer (Fig. 5e) when
compared to autumn (Fig. 5f). A prominent spectral mismatch was
observed in wavelengths centred at 515 nm for the autumn season,
which is absent in spring and summer, respectively.

3.2. Retrieval of leaf traits across canopy positions throughout the growing
season

Leaf traits retrieved via the PROSPECT model inversion were com-
pared to leaf traits measured in the field. Results show that the retrieval
accuracy for Cab was higher for the lower canopy (NRMSE=0.103)
when compared to the upper canopy (NRMSE=0.122) across all sea-
sons (Fig. 6). The retrieval accuracy of Cab for the lower canopy con-
sistently outperformed that of the upper canopy for each season. The
difference in Cab retrieval accuracy between upper canopy and lower
canopy was small in spring (NRMSE=0.209 and NRMSE=0.2 for
lower and upper canopy respectively) when compared to summer
(NRMSE=0.269 and NRMSE=0.199 for lower and upper canopy
respectively) and autumn (NRMSE=0.1 and NRMSE=0.14 for lower
and upper canopy respectively respectively). Across seasons, Cab was
retrieved with higher accuracy in autumn nRMSE (NRMSE=0.112)
when compared to spring (NRMSE=0.195) and summer
(NRMSE=0.219).
Results of the study show that EWT for the lower canopy was

Fig. 4. Measured and simulated leaf reflectance spectra (generated in forward mode) for the upper and lower canopy for all samples used in the study. The spectral
mismatch between measured and simulated reflectance is greater for the upper canopy compared to the lower canopy leaf samples for the pooled dataset and across
all seasons (see inserts).
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retrieved with higher accuracy (NRMSE=0.125) when compared to the upper canopy (NRMSE=0.188) across all seasons (Fig. 7). Upper

Fig. 5. Variation in RMSE between measured and simulated leaf reflectance for pooled dataset (a), seasons (b), leaf position (c); and leaf position for spring (d),
summer (e) and autumn (f).

Fig. 6. Retrieval accuracies of the leaf chlorophyll content (Cab) across canopy positions throughout the growing season.
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canopy EWT was retrieved with low accuracy (NRMSE=0.162 for
spring, NRMSE=0.24 for summer and NRMSE=0.258 for autumn)
when compared to low canopy (NRMSE=0.128 spring, NRMSE 0.16
= summer and NRMSE=0.129 autumn) across all seasons. The dif-
ference in EWT retrieval accuracy between the upper and lower canopy
widens as the season progressed with a huge difference observed in
summer. Generally the retrieval accuracy of EWT was high in spring
(NRMSE=0.13), compared to summer (NRMSE=0.172) and autumn
(NRMSE=0.168). The pattern of EWT retrieval accuracy between the
upper and lower canopy follows a similar trend observed for Cab.
The retrieval accuracy for LMA was higher for the upper canopy

(NRMSE=0.154) compared to lower canopy (NRMSE=0.176) across
all seasons (Fig. 8). A similar trend was also observed for summer
(NRMSE=0.146 and NRMSE=0.213) and autumn (NRMSE=0.174
and NRMSE=0.239). In contrast, lower canopy LMA for spring was
retrieved with higher accuracy (NRMSE=0.162) when compared to
the upper canopy (NRMSE=0.184) for the same season. The difference
in LMA retrieval accuracy between the upper canopy and the lower
canopy was wide in summer and autumn compared to spring. Gen-
erally, LMA was retrieved with higher accuracy in summer
(NRMSE=0.148) when compared to spring (NRMSE=0.154) and
autumn (NRMSE=0.158). The difference in retrieval accuracy of LMA
across seasons was small however the summer season exhibited a better
fit (R2 = 0.82).

4. Discussion

4.1. Does the position of a leaf within a vertical canopy profile affects
modelling leaf spectral reflectance throughout the growing season?

The PROSPECT model exhibited the capability to reconstruct leaf
reflectance spectra across the canopy throughout the growing season.
The stronger agreement between measured and simulated reflectance
spectra observed for the lower canopy leaves compared to the upper
canopy leaves (Fig. 4 and 5) can be attributed to difference in leaf

morphological traits, such as specific leaf area (SLA) and LMA between
leaf samples collected from the two canopy layers. These morphological
differences have been reported to complicate the modelling of leaf
optical properties and subsequent retrieval of leaf traits (Qiu et al.,
2018). Field data used in this study evidently demonstrated high SLA
values for leaf samples collected from the lower canopy when compared
to the upper canopy leaf samples throughout the growing season
(Fig. 9), implying that generally upper canopy leaves are thicker com-
pared to lower canopy leaves. Leaf reflectance, especially in the NIR,
increases when a leaf thickens due to the increase in the quantity of
materials that scatters radiation (Zhang et al., 2007).
The relatively high RMSE between measured and simulated leaf

reflectance in wavebands centred around 510, 740 and 1590 and
1885 nm across seasons and canopy positions, imply that these wave-
bands are either not well measured or modelled by the PROSPECT
model. The spectral mismatch in these wavebands has been observed
even for re-calibrated PROSPECT models. For example, Li and Wang
(2011) observed RMSE of up to 0.06 in the ‘red edge’ and SWIR spectral
regions after recalibrating the PROSPECT 4 model. The lower RMSEs
between measured and simulated leaf reflectance in the ‘red edge’
spectrum for autumn in comparison to spring and summer can be as-
cribed to the sensitivity of the ‘red edge’ spectrum when the distribution
of foliar nutrients within the leaf volume become uniform during se-
nescence in the autumn season (Maillard et al., 2015). This observation
reflects the subtle sensitivity of the PROSPECT model to variation in
chlorophyll content at peak vegetation growth, which potentially has
an effect on retrieval accuracy of Cab during the summer season. To the
best of our knowledge, our study provides the first preliminary un-
derstanding on the effect of leaf position within a vertical canopy
profile on the performance of PROSPECT model by inspecting the
spectral match between measured and simulated leaf reflectance
spectra throughout the growing season.

Fig. 7. Retrieval accuracies of EWT across canopy positions throughout the growing season.
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4.2. Effect of leaf position on the retrieval accuracy of leaf traits throughout
the growing season

The higher accuracy of retrieval of Cab obtained for leaf samples
collected from the lower canopy compared to the upper canopy
throughout the growing season (Fig. 6) can be attributed to the dis-
tribution of chloroplasts within a leaf that affects absorption and
transmittance of radiation by leaf chlorophyll pigments. Most of the
chloroplasts for upper sunlit leaves are clumped in the palisade layer
whilst for shaded leaves, the chloroplasts are evenly distributed be-
tween the palisade and spongy mesophyll layer (Adds et al., 1997). We
speculate that the evenly distributed chloroplast in shaded lower

canopy leaves improves the sensitivity and interaction of radiation and
chlorophyll pigments. The widest differences in Cab retrieval accuracy
between upper and lower canopy coincided with the period of max-
imum leaf chlorophyll content (Fig. 2). This observation can be at-
tributed to the manifestation of the shadow effect on the lower canopy
resulting in a reduction in photosynthetically active radiation (PAR)
reaching to the lower canopy. The position of a leaf across the canopy
vertical profile is a key determinant of its pigment content and subse-
quently photosynthetic capacity (Arellano et al., 2017). The illuminated
upper canopies are known to display high pigment content to com-
mensurate the high relative irradiance received. The least retrieval
accuracy of Cab across all seasons (i.e. summer (NRMSE=0.219)

Fig. 8. Retrieval accuracies of the leaf mass per area (LMA) across canopy positions throughout the three growing seasons.

Fig. 9. Variation in SLA across canopy positions throughout the growing season. (UC and LC represent upper and lower canopy respectively).
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coincided with the season of high leaf chlorophyll content (Fig. 2). This
observation is in agreement with the findings of Zhang et al. (2007)
who obtained the lowest accuracy in the retrieval of Cab in summer,
using the PROSPECT model in sugar maple stands. The seasonal dis-
tribution of chlorophyll pigments within a leaf can be linked to poor
leaf chlorophyll retrievals obtained in summer. During peak vegetation
growth, chlorophyll and other nutrients are confined in chloroplast
cells, and these cells are organized in a clumped manner. As leaves
senescence, chloroplast degrades, and the chlorophyll pigments to-
gether with other nutrients like leaf protein are released in remobiliz-
able form and become uniformly distributed across the leaf volume
(Carrión et al., 2014). This phenomenon, therefore, improves the in-
teraction between radiation and leaf nutrients that are freely and uni-
formly distributed across the leaf volume. However, it is worthwhile to
note that Yang et al. (2016) estimated chlorophyll with high accuracy
in summer in comparison to other seasons using partial least squares
regression (PLSR) in two temperate deciduous forests in the north-
eastern United States.
Results of our study demonstrate contrasting patterns in seasonal

retrieval accuracies of LMA and EWT across canopy positions. We ex-
pected LMA and EWT to display similar seasonal retrieval patterns
across the canopy, mainly because these two traits co-vary on the leaf
economic spectrum, i.e. EWT facilitates transportation of nutrients and
is a key regulator of photosynthesis and subsequently the amount of dry
matter content accumulated in a leaf (Asbjornsen et al., 2011; Waring
and Landsberg, 2011). Statistically, LMA and EWT demonstrated a
positive co-variance and strong correlation (r= 0.66, p= 0.00, Fig. 3).
Previous studies reported that EWT is probably easier to retrieve via
PROSPECT inversion due to its dominance and well-elaborated specific
absorption features compared to LMA (Jiang et al., 2018, Wang et al.,
2011; Feret et al., 2008). The high EWT retrieval accuracies obtained
for the lower canopy in comparison to the upper canopy throughout the
growing season conform to the variation in spectral matching between
measured and simulated reflectance spectra for the two canopy layers
especially in key water absorption wavebands [970, 1200 and 1400 nm
(Curran, 1989)]. The pattern in EWT retrieval accuracy across canopy
positions and seasons can be explained by the high wax-cuticle load
that characterize upper canopy leaves in a bid to prevent photo-da-
mage, especially at peak vegetative growing season that is character-
ized by increased radiation amounts (Jacoby et al., 1990; Bouzoubaâ
et al., 2006). High wax-cuticle load conceal the interaction between
radiation and leaf biochemical constituents especially in the NIR/SWIR
optical domain resulting in complex relationship with reflected light
(Féret et al., 2018; Barry et al., 2009).
Contrary to the pattern of EWT retrieval accuracy across seasons

and canopy positions, we observed that the retrieval accuracy of LMA
for the upper canopy outperformed that of the lower canopy for all the
seasons except the spring season. This observation does not reflect the
pattern of spectral matching between measured and PROSPECT simu-
lated reflectance spectra observed in Fig. 4 and 5 for the upper and
lower canopy samples. We expected to retrieve LMA for the lower ca-
nopy with higher accuracy mainly because reflectance spectra simu-
lated by the PROSPECT model in forward model closely matched the
measured reflectance spectra for lower canopy in comparison to the
upper canopy. This was especially evident in the NIR and SWIR spec-
trum -known to be sensitive to variations in LMA (Feret et al., 2008;
Baret and Fourty, 1997). Several reasons can be attributed to the mis-
match between the pattern of LMA retrieval accuracy and spectral
matching across the canopy throughout the growing season. Firstly,
LMA is often retrieved with relatively low accuracy because the high
specific absorption coefficients of water which conceal the effect of
LMA spectral response (Jacquemoud et al., 1996; Riano et al., 2005).
Secondly, LMA consists of a wide range of constituents, such as protein,
lignin, cellulose, starch, sugar and lipids (Qiu et al., 2018). The specific
absorption coefficient spectrum used in the PROSPECT model is con-
sidered a weighted average of the molecular absorption spectra of these

constitutes (Jacquemoud et al., 1996). This approach is likely to induce
increased uncertainties, especially in wavelengths of high LMA ab-
sorption as different components of these constituents can yield dif-
ferent specific absorption coefficients of LMA. Thirdly, thicker leaves or
leaves of higher LMA values tend to have denser tissues and less air
space, which results in diverse leaf internal structure and complex light
scattering (Demarez, 1999). Finally, although it has been demonstrated
earlier that the SWIR (especially between 2100–2300 nm) is more
sensitive to LMA (Wang et al., 2011), our spectral reflectance data had
low signal to noise ratio in this spectrum.
Although retrieval of LMA did not show similar patterns to Cab and

EWT retrieval across the canopy, it was generally retrieved with higher
accuracy (NRMSE=0.145 for the pooled dataset) compared to pre-
vious studies that used the PROSPECT model in the same ecosystem.
For example, Ali et al. (2016) reported an NRMSE of 0.23 while Wang
et al. (2015a) reported an NRMSE of 0.22 for LMA retrieved using the
PROSPECT inversion based on 53 sunlit leaf samples collected in
summer. The relatively lower accuracy reported in these studies could
be ascribed to a small sample size (n=53 compared to 588 samples in
this study) used for model validation. To our knowledge, our work
provides the first attempt to examine the effect of leaf position within a
vertical canopy profile on the performance of the PROSPECT model
when retrieving leaf traits throughout a growing season.

4.2.1. Implications on plant traits spectroscopy
Results presented in this study have implications on modelling leaf

optical properties and retrieval of foliar traits especially using multi-
layer canopy radiative models (Kuusk, 2001). The conventional ap-
proach of sampling foliar material exclusively from the sunlit upper
canopy has recently become a contentious approach in remote sensing
vegetation canopies. Recent studies demonstrate that the vertical het-
erogeneity in leaf chlorophyll, water and dry matter content have a
significant effect on canopy reflectance measured by remote sensing
instruments (Yang et al., 2017; Wang and Li, 2013; Zhao et al., 2017).
The vertical heterogeneity in leaf traits is known to affect re-absorption
and scattering of radiation within vegetation canopies, and subse-
quently, the top of canopy reflectance measured by remote sensing
instruments (Verhoef and Bach, 2007). Our previous study (Gara et al.,
2018b) also demonstrated that incorporating leaf traits from the shaded
lower canopy improve the modelling accuracy of dry matter related
canopy traits such as canopy LMA, nitrogen and carbon using in-situ
hyperspectral measurements. Results presented in the current study
demonstrate that the position of a leaf affects the performance of the
PROSPECT model and the retrieval of its input parameters. This ob-
servation implies that failure to account for the vertical heterogeneity
in leaf traits between sunlit upper and shaded lower leaves together
with their optical properties might introduce significant uncertainties in
the modelling canopy reflectance and retrieval of canopy traits(Yang
et al., 2017; Li et al., 2018). These results are particularly relevant to
the vegetation spectroscopy community considering that the PROSP-
ECT model is coupled with widely used canopy RTMs such as INFORM
(Schlerf and Atzberger, 2006) and SAILH (Jacquemoud et al., 2009).

5. Conclusion

Our results demonstrated a strong agreement between the measured
and PROSPECT simulated reflectance spectra for leaves from the lower
canopy compared to the upper canopy, especially in the NIR spectral
region, throughout the growing season. This pattern concurred with the
higher retrieval accuracy of Cab and EWT for the lower canopy com-
pared to the upper canopy throughout the growing. Variations in Cab
and EWT retrieval accuracy across the canopy vertical profile can be
linked to seasonal changes in leaf biochemistry and morphology,
especially SLA. On the contrary, the LMA retrieval accuracy pattern did
not reflect the spectral match observed between the upper and lower
canopy. This implies that there is further need to separate and model
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respective constituents of LMA to improve PROSPECT stability and
credibility. We conclude that the PROSPECT model provides reasonable
retrieval accuracies for Cab, EWT and LMA from reflectance spectra
across canopy position throughout the growing season. However, our
results for the first time demonstrated seasonal variation in retrieval
accuracy of leaf traits via PROSPECT model inversion through a vertical
canopy profile. Our results point out the potential source of un-
certainties in the retrieval of leaf traits using the widely used PROSP-
ECT model.
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Fig. A1. Distribution of retrieved Cab based on different solutions across the canopy throughout the growing season.
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Fig. A2. Distribution of retrieved EWT based on different solutions across the canopy throughout the growing season.
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