168 research outputs found

    The \chi Factor: Determining the Strength of Activity in Low Mass Dwarfs

    Full text link
    We describe a new, distance-independent method for calculating the magnetic activity strength in low mass dwarfs, L_{H\alpha}/L_{bol}. Using a well-observed sample of nearby stars and cool standards spanning spectral type M0.5 to L0, we compute ``\chi'', the ratio between the continuum flux near H-alpha and the bolometric flux, f_{\lambda6560}/f_{bol}. This ratio may be multiplied by the measured equivalent width of the H-alpha emission line to yield L_{H\alpha}/L_{bol}. We provide \chi values for all objects in our sample, as well as fits to \chi as a function of color and average values by spectral type. This method was used by West et al.(2004) to examine trends in magnetic activity strength in low mass stars.Comment: 11 pages, 5 figures. Accepted for publication in PAS

    The Ultraviolet Radiation Environment Around M dwarf Exoplanet Host Stars

    Get PDF
    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both FUV and NUV wavelengths. The combined FUV+NUV spectra are publically available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV quiet" M dwarfs are observed. The bright stellar Ly-alpha emission lines are reconstructed, and we find that the Ly-alpha line fluxes comprise ~37-75% of the total 1150-3100A flux from most M dwarfs; > 10^{3} times the solar value. The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be ~0.5-3 for all M dwarfs in our sample, > 10^{3} times the solar ratio. For the four stars with moderate signal-to-noise COS time-resolved spectra, we find UV emission line variability with amplitudes of 50-500% on 10^{2} - 10^{3} s timescales. Finally, we observe relatively bright H2 fluorescent emission from four of the M dwarf exoplanetary systems (GJ 581, GJ 876, GJ 436, and GJ 832). Additional modeling work is needed to differentiate between a stellar photospheric or possible exoplanetary origin for the hot (T(H2) \approx 2000-4000 K) molecular gas observed in these objects.Comment: ApJ, accepted. 16 pages, 10 figures. On-line data at: http://cos.colorado.edu/~kevinf/muscles.htm

    White-light flares on cool stars in the Kepler Quarter 1 Data

    Full text link
    We present the results of a search for white light flares on the ~23,000 cool dwarfs in the Kepler Quarter 1 long cadence data. We have identified 373 flaring stars, some of which flare multiple times during the observation period. We calculate relative flare energies, flare rates and durations, and compare these with the quiescent photometric variability of our sample. We find that M dwarfs tend to flare more frequently but for shorter durations than K dwarfs, and that they emit more energy relative to their quiescent luminosity in a given flare than K dwarfs. Stars that are more photometrically variable in quiescence tend to emit relatively more energy during flares, but variability is only weakly correlated with flare frequency. We estimate distances for our sample of flare stars and find that the flaring fraction agrees well with other observations of flare statistics for stars within 300 pc above the Galactic Plane. These observations provide a more rounded view of stellar flares by sampling stars that have not been pre-selected by their activity, and are informative for understanding the influence of these flares on planetary habitability.Comment: 42 pages, 10 figures, 2 tables; Accepted for publication in the Astronomical Journa

    Photometric Variability in Kepler Target Stars: The Sun Among Stars -- A First Look

    Full text link
    The Kepler mission provides an exciting opportunity to study the lightcurves of stars with unprecedented precision and continuity of coverage. This is the first look at a large sample of stars with photometric data of a quality that has heretofore been only available for our Sun. It provides the first opportunity to compare the irradiance variations of our Sun to a large cohort of stars ranging from vary similar to rather different stellar properties, at a wide variety of ages. Although Kepler data is in an early phase of maturity, and we only analyze the first month of coverage, it is sufficient to garner the first meaningful measurements of our Sun's variability in the context of a large cohort of main sequence stars in the solar neighborhood. We find that nearly half of the full sample is more active than the active Sun, although most of them are not more than twice as active. The active fraction is closer to a third for the stars most similar to the Sun, and rises to well more than half for stars cooler than mid K spectral types.Comment: 13 pages, 4 figures, accepted to ApJ Letter

    The Whole is Greater than the Sum of the Parts: Optimizing the Joint Science Return from LSST, Euclid and WFIRST

    Get PDF
    The focus of this report is on the opportunities enabled by the combination of LSST, Euclid and WFIRST, the optical surveys that will be an essential part of the next decade's astronomy. The sum of these surveys has the potential to be significantly greater than the contributions of the individual parts. As is detailed in this report, the combination of these surveys should give us multi-wavelength high-resolution images of galaxies and broadband data covering much of the stellar energy spectrum. These stellar and galactic data have the potential of yielding new insights into topics ranging from the formation history of the Milky Way to the mass of the neutrino. However, enabling the astronomy community to fully exploit this multi-instrument data set is a challenging technical task: for much of the science, we will need to combine the photometry across multiple wavelengths with varying spectral and spatial resolution. We identify some of the key science enabled by the combined surveys and the key technical challenges in achieving the synergies.Comment: Whitepaper developed at June 2014 U. Penn Workshop; 28 pages, 3 figure

    Improved age constraints for the AB Dor quadruple system - The binary nature of AB Dor B

    Get PDF
    We present resolved NACO photometry of the close binary AB Dor B in H- and Ks-band. AB Dor B is itself known to be a wide binary companion to AB Dor A, which in turn has a very low-mass close companion named AB Dor C. These four known components make up the young and dynamically interesting system AB Dor, which will likely become a benchmark system for calibrating theoretical pre-main sequence evolutionary mass tracks for low-mass stars. However, for this purpose the actual age has to be known, and this subject has been a matter of discussion in the recent scientific literature. We compare our resolved photometry of AB Dor Ba and Bb with theoretical and empirical isochrones in order to constrain the age of the system. This leads to an age estimate of about 50 to 100 Myr. We discuss the implications of such an age range for the case of AB Dor C, and compare with other results in the literature.Comment: 7 pages, 6 figures, accepted for publication in A&
    corecore