254 research outputs found

    Preparation and characterization of novel polymer-based gel electrolyte for dye-sensitized solar cells based on poly(vinylidene fluoride-cohexafluoropropylene) and poly(acrylonitrile-cobutadiene) or poly(dimethylsiloxane) bis(3-aminopropyl) copolymers

    Get PDF
    Polymer gel electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(acrylonitrile-co-butadiene) (PAB) or poly(dimethylsiloxane) bis(3-aminopropyl)-terminated (PDES-bAP) copolymers were prepared and investigated in dye-sensitized solar cells (DSSCs). Selected optical and electrochemical properties of all compositions with various ratio from 9:1 to 6:4 were investigated towards DSSC applications. The highest value of power conversion efficiency equal to 5.07% was found for DSSCs containing a PVDF-HPF:PAB (9:1) gel electrolyte. Compositions of electrolytes were additionally tested by electrochemical impedance spectroscopy. The influence of the ratio and type of polymers used as an additive to PVDF-HPF on absorption wavelengths, energy gap, and Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) levels were investigated. Individual components of DSSCs, such as the TiO2 layer and platinum nanoparticles, were imaged by scanning electron microscope. Finally, a DSSC module with six electrically separated solar cells with a 7 × 80 mm2 active area was constructed based on gel electrolytes and tested. © 2020 by the authors

    Influence of Heat Treatment on Defect Structures in Single-Crystalline Blade Roots Studied by X-ray Topography and Positron Annihilation Lifetime Spectroscopy

    Get PDF
    Single-crystalline superalloy CMSX-4 is studied in the as-cast state and after heat treatment, with material being taken from turbine blade castings. The effect of the heat treatment on the defect structure of the root area near the selector/root connection is emphasized. Multiscale analysis is performed to correlate results obtained by X-ray topography and positron annihilation lifetime spectroscopy (PALS). Electron microscopy observations were also carried out to characterize the inhomogeneity in dendritic structure. The X-ray topography was used to compare defects of the misorientation nature, occurring in as-cast and treated states. The type and concentration of defects before and after heat treatment in different root areas were determined using the PALS method, which enables voids, mono-vacancies, and dislocations to be taken into account. In this way, differences in the concentration of defects caused by heat treatment are rationalized

    Focused ion beam-based microfabrication of boron-doped diamond single-crystal tip cantilevers for electrical and mechanical scanning probe microscopy

    Get PDF
    In this paper, the fabrication process and electromechanical properties of novel atomic force microscopy probes utilising single-crystal boron-doped diamond are presented. The developed probes integrate scanning tips made of chemical vapour deposition-grown, freestanding diamond foil. The fabrication procedure was performed using nanomanipulation techniques combined with scanning electron microscopy and focused ion beam technologies. The mechanical properties of the cantilever were monitored by the measurement of thermally induced vibration of the cantilever after every fabrication step, allowing the mass changes in range of ng to be estimated. The endurance of the developed probes was tested during hundreds of topography measurements, which corresponds to a scanning length equal to 13.6 m, performed on a test sample in contact and lateral force microscopy modes. Analysis of the roughness parameters confirmed the extremely high wear resistance of the fabricated probes. The linear current voltage response on a highly-oriented pyrolytic graphite sample was recorded

    A variable probe pitch micro-Hall effect method

    Get PDF
    Hall effect metrology is important for a detailed characterization of the electronic properties of new materials for nanoscale electronics. The micro-Hall effect (MHE) method, based on micro four-point probes, enables a fast characterization of ultrathin films with minimal sample preparation. Here, we study in detail how the analysis of raw measurement data affects the accuracy of extracted key sample parameters, i.e., how the standard deviation on sheet resistance, carrier mobility and Hall sheet carrier density is affected by the data analysis used. We compare two methods, based primarily on either the sheet resistance signals or the Hall resistance signals, by theoretically analysing the effects of electrode position errors and electrical noise on the standard deviations. We verify the findings with a set of experimental data measured on an ultrashallow junction silicon sample. We find that in presence of significant electrical noise, lower standard deviation is always obtained when the geometrical analysis is based on the sheet resistance signals. The situation is more complicated when electrode position errors are dominant; in that case, the better method depends on the experimental conditions, i.e., the distance between the insulating boundary and the electrodes. Improvement to the accuracy of Hall Effect measurement results is crucial for nanoscale metrology, since surface scattering often leads to low carrier mobility

    A European Concern? Genetic Structure and Expansion of Golden Jackals (Canis aureus) in Europe and the Caucasus

    Get PDF
    In the first continent-wide study of the golden jackal (Canis aureus), we characterised its population genetic structure and attempted to identify the origin of European populations. This provided a unique insight into genetic characteristics of a native carnivore population with rapid large-scale expansion. We analysed 15 microsatellite markers and a 406 basepair fragment of the mitochondrial control region. Bayesian-based and principal components methods were applied to evaluate whether the geographical grouping of samples corresponded with genetic groups. Our analysis revealed low levels of genetic diversity, reflecting the unique history of the golden jackal among Europe’s native carnivores. The results suggest ongoing gene flow between south-eastern Europe and the Caucasus, with both contributing to the Baltic population, which appeared only recently. The population from the Peloponnese Peninsula in southern Greece forms a common genetic cluster with samples from south-eastern Europe (ΔK approach in STRUCTURE, Principal Components Analysis [PCA]), although the results based on BAPS and the estimated likelihood in STRUCTURE indicate that Peloponnesian jackals may represent a distinct population. Moreover, analyses of population structure also suggest either genetic distinctiveness of the island population from Samos near the coast of Asia Minor (BAPS, most STRUCTURE, PCA), or possibly its connection with the Caucasus population (one analysis in STRUCTURE). We speculate from our results that ancient Mediterranean jackal populations have persisted to the present day, and have merged with jackals colonising from Asia. These data also suggest that new populations of the golden jackal may be founded by long-distance dispersal, and thus should not be treated as an invasive alien species, i.e. an organism that is “non-native to an ecosystem, and which may cause economic or environmental harm or adversely affect human health”. These insights into the genetic structure and ancestry of Baltic jackals have important implications for management and conservation of jackals in Europe. The golden jackal is listed as an Annex V species in the EU Habitats Directive and as such, considering also the results presented here, should be legally protected in all EU member states

    Determination of crystal orientation by Ω-scan method in nickel-based single-crystal turbine blades

    Get PDF
    The article presents an assessment of the crystal perfection of single-crystal turbine blades based on the crystal orientation and lattice parameter distribution on their surface. Crystal orientation analysis was conducted by the X-ray diffraction method Ω-scan and the X-ray diffractometer provided by the EFG Company. The Ω-scan method was successfully used for evaluation of the crystal orientation and lattice parameters in semiconductors. A description of the Ω-scan method and an example of measurement of crystal orientation compared to the Laue and EBSD methods are presented.This work was supported by the National Science Centre Poland (NCN) under Grant No. Preludium-UMO-2016/21/N/ST8/00240

    Importance of thermophilous habitats for protection of wild bees (Apiformes)

    Get PDF
    Research on wild bees (Apiformes) was conducted in the Lower Oder Valley (NW Poland) at Natura 2000 sites near the border between Poland and Germany. The analysis involved 3 landscape types with xerothermic and sandy grasslands, differing in the proportion of woody vegetation. In total, we collected there 4158 specimens of Apiformes, representing 180 species. We have proved that mid-forest grasslands with a high proportion of thermophilous broad-leaved forests and xerothermic shrub communities are equally attractive to wild bees as open habitats (sandy grasslands, xerothermic grasslands/heaths). We observed varied responses of wild bee species with specific functional characteristics to increasing proportion of woody vegetation. The grasslands surrounded by forests were characterized by the highest number of cleptoparasitic species. In contrast, solitary and social bee species preferred forest-steppe habitats. However, in open habitats, solitary bees were the most abundant. Moreover, open habitats were distinguished by the highest number and abundance of rare species. Active protection of thermophilous grasslands is crucial for biodiversity conservation, also with respect to the natural resources of Apiformes. Preservation of biodiversity in threatened xerothermic and sandy grasslands should be one of the key objectives of nature conservation in European countries. Currently, more and more actions are undertaken to improve their condition and to restore those particularly valuable and threatened habitat types

    Comparison of three methods of DNA extraction from human bones with different degrees of degradation

    Get PDF
    There is a necessity for deceased identification as a result of many accidents and sometimes bones are the only accessible source of DNA. So far, a universal method that allows for extraction of DNA from materials at different stages of degradation does not exist. The aims of this study were: the comparison of three methods of DNA extraction from bones with different degree of degradation and an evaluation of the usefulness of these methods in forensic genetics. The efficiency of DNA extraction, the degree of extract contamination by polymerase chain reaction (PCR) inhibitors and the possibility of determining the STR loci profile were especially being compared. Nuclear DNA from bones at different states of degradation was isolated using three methods: classical, organic phenol–chloroform extraction, DNA extraction from crystal aggregates and extraction by total demineralisation. Total demineralisation is the best method for most cases of DNA extraction from bones, although it does not provide pure DNA. DNA extraction from aggregates removes inhibitors much better and is also a good method of choice when identity determination of exhumed remains is necessary. In the case of not buried bones (remains found outside) total demineralisation or phenol–chloroform protocols are more efficient for successful DNA extraction
    corecore