506 research outputs found

    Hypolignification: a decisive factor in the development of hyperhydricity

    Get PDF
    One of the characteristics of hyperhydric plants is the reduction of cell wall lignification (hypolignification), but how this is related to the observed abnormalities of hyperhydricity (HH), is still unclear. Lignin is hydrophobic, and we speculate that a reduction in lignin levels leads to more capillary action of the cell wall and consequently to more water in the apoplast. p-coumaric acid is the hydroxyl derivative of cinnamic acid and a precursor for lignin and flavonoids in higher plant. In the present study, we examined the role of lignin in the development of HH in Arabidopsis thaliana by checking the wild-types (Ler and Col-0) and mutants affected in phenylpropanoid biosynthesis, in the gene coding for cinnamate 4-hydroxylase, C4H (ref3-1 and ref3-3). Exogenously applied p-coumaric acid decreased the symptoms of HH in both wild-type and less-lignin mutants. Moreover, the results revealed that exogenously applied p-coumaric acid inhibited root growth and increased the total lignin content in both wild-type and less-lignin mutants. These effects appeared to diminish the symptoms of HH and suggest an important role for lignin in HH

    Fine mapping of two major QTLs conferring resistance to powdery mildew in tomato

    Get PDF
    Tomato (Solanum lycopersicum) is the most cultivated crop in the Solanaceae family and is a host for Oidium neolycopersici, the cause agent of powdery mildew disease. In wild species of tomato, genes (Ol-1–Ol-6) for monogenic resistance have been identified. Moreover, three quantitative resistance loci (QRLs), namely Ol-qtl1, Ol-qtl2 and Ol-qtl3, have been mapped in Solanum neorickii G1.1601. In this work, we developed several advanced backcross populations in order to fine-map these Ol-qtls. Resistant lines harboring individual Ol-qtl were produced and used in recombinant screening. Ten recombinants were identified in chromosomal regions carrying Ol-qtl1s. The recombinant individuals were used to produce recombinant families (RFs). By screening these RFs with molecular markers and testing them with O. neolycopersici, we could localize Ol-qtl1 in a region of about 2.3 Mbp on the long arm of chromosome 6 and Ol-qtl2 in a region of 2.5 Mbp on the short arm of chromosome 12. On the other hand, the presence of Ol-qtl3 locus was not confirmed in this study. The fine-mapping results further demonstrated the co-localization between Ol-qtls and genes for monogenic resistance; the Ol-qtl1 interval contains the Ol-1 gene and the Ol-qtl2 interval harbors the Lv gene that confers monogenic resistance to Leveillula taurica, another species of tomato powdery mildew

    Указ президента України “Про проведення Всеукраїнської молодіжної акції “Пам’ятати. Відродити. Зберегти”

    Get PDF
    Genetic dissection of disease susceptibility in Arabidopsis to powdery and downy mildew has identified multiple susceptibility (S) genes whose impairment results in disease resistance. Although several of these S-genes have been cloned and characterized in more detail it is unknown to which degree their function in disease susceptibility is conserved among different plant species. Moreover, it is unclear whether impairment of such genes has potential in disease resistance breeding due to possible fitness costs associated with impaired alleles. Here we show that the Arabidopsis PMR4 and DMR1, genes encoding a callose synthase and homoserine kinase respectively, have functional orthologs in tomato with respect to their S-gene function. Silencing of both genes using RNAi resulted in resistance to the tomato powdery mildew fungus Oidium neolycopersici. Resistance to O. neolycopersici by SlDMR1 silencing was associated with severely reduced plant growth whereas SlPMR4 silencing was not. SlPMR4 is therefore a suitable candidate gene as target for mutagenesis to obtain alleles that can be deployed in disease resistance breeding of tomato

    Mapping of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX

    Get PDF
    The use of resistant varieties is an important tool in the management of late blight, which threatens potato production worldwide. Clone MaR8 from the Mastenbroek differential set has strong resistance to Phytophthora infestans, the causal agent of late blight. The F1 progeny of a cross between the susceptible cultivar Concurrent and MaR8 were assessed for late blight resistance in field trials inoculated with an incompatible P. infestans isolate. A 1:1 segregation of resistance and susceptibility was observed, indicating that the resistance gene referred to as R8, is present in simplex in the tetraploid MaR8 clone. NBS profiling and successive marker sequence comparison to the potato and tomato genome draft sequences, suggested that the R8 gene is located on the long arm of chromosome IX and not on the short arm of chromosome XI as was suggested previously. Analysis of SSR, CAPS and SCAR markers confirmed that R8 was on the distal end of the long arm of chromosome IX. R gene cluster directed profiling markers CDPSw54 and CDPSw55 flanked the R8 gene at the distal end (1 cM). CDPTm21-1, CDPTm21-2 and CDPTm22 flanked the R8 gene on the proximal side (2 cM). An additional co-segregating marker (CDPHero3) was found, which will be useful for marker assisted breeding and map based cloning of R8

    Genetics and molecular mechanisms of resistance to powdery mildews in tomato (Solanum lycopersicum) and its wild relatives

    Get PDF
    Powdery mildews (PMs) cause disease in a wide range of plant species including important crops. Taking tomato as an example, here we review findings on the genetic basis and mechanisms of plant resistance to PMs. First, we present a summary of our research on tomato resistance to two PM species, with the focus on Oidium neolycopersici. We discuss the genetics of resistance to this pathogen in tomato. Then, we compare different forms of resistance mediated by different resistance genes based on molecular and cytological data. Also, we provide a comparison between these resistance genes in tomato with those in barley, Arabidopsis and wheat, in order to present a model for the genetic basis of resistance to PMs in plants. We try to accommodate these resistance mechanisms in the current model of plant innate immunity. At the end we discuss possibilities to translate these findings to practical approaches in breeding for resistance to PMs in crops

    Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening

    Get PDF
    In tomato, carotenoids are important with regard to major breeding traits such as fruit colour and human health. The enzyme phytoene synthase (PSY1) directs metabolic flux towards carotenoid synthesis. Through TILLING (Targeting Induced Local Lesions IN Genomes), we have identified two point mutations in the Psy1 gene. The first mutation is a knockout allele (W180*) and the second mutation leads to an amino acid substitution (P192L). Plants carrying the Psy1 knockout allele show fruit with a yellow flesh colour similar to the r, r mutant, with no further change in colour during ripening. In the line with P192L substitution, fruit remain yellow until 3 days post-breaker and eventually turn red. Metabolite profiling verified the absence of carotenoids in the W180* line and thereby confirms that PSY1 is the only enzyme introducing substrate into the carotenoid pathway in ripening fruit. More subtle effects on carotenoid accumulation were observed in the P192L line with a delay in lycopene and β-carotene accumulation clearly linked to a very slow synthesis of phytoene. The observation of lutein degradation with ripening in both lines showed that lutein and its precursors are still synthesised in ripening fruit. Gene expression analysis of key genes involved in carotenoid biosynthesis revealed that expression levels of genes in the pathway are not feedback-regulated by low levels or absence of carotenoid compounds. Furthermore, protein secondary structure modelling indicated that the P192L mutation affects PSY1 activity through misfolding, leading to the low phytoene accumulation

    Graphical genotyping as a method to map Ny ((o,n)sto) and Gpa5 using a reference panel of tetraploid potato cultivars

    Get PDF
    The method of graphical genotyping is applied to a panel of tetraploid potato cultivars to visualize haplotype sharing. The method allowed to map genes involved in virus and nematode resistance. The physical coordinates of the amount of linkage drag surrounding these genes are easily interpretable. Graphical genotyping is a visually attractive and easily interpretable method to represent genetic marker data. In this paper, the method is extended from diploids to a panel of tetraploid potato cultivars. Application of filters to select a subset of SNPs allows one to visualize haplotype sharing between individuals that also share a specific locus. The method is illustrated with cultivars resistant to Potato virus Y (PVY), while simultaneously selecting for the absence of the SNPs in susceptible clones. SNP data will then merge into an image which displays the coordinates of a distal genomic region on the northern arm of chromosome 11 where a specific haplotype is introgressed from the wild potato species S. stoloniferum (CPC 2093) carrying a gene (Ny ((o,n)sto) ) conferring resistance to two PVY strains, PVYO and PVYNTN. Graphical genotyping was also successful in showing the haplotypes on chromosome 12 carrying Ry-f (sto) , another resistance gene derived from S. stoloniferum conferring broad-spectrum resistance to PVY, as well as chromosome 5 haplotypes from S. vernei, with the Gpa5 locus involved in resistance against Globodera pallida cyst nematodes. The image also shows shortening of linkage drag by meiotic recombination of the introgression segment in more recent breeding material. Identity-by-descent was found to be a requirement for using graphical genotyping, which is proposed as a non-statistical alternative method for gene discovery, as compared with genome-wide association studies. The potential and limitations of the method are discussed.Peer reviewe

    RLP/K enrichment sequencing; a novel method to identify receptor-like protein (RLP) and receptor-like kinase (RLK) genes

    Get PDF
    The identification of immune receptors in crop plants is time-consuming but important for disease control. Previously, resistance gene enrichment sequencing (RenSeq) was developed to accelerate mapping of nucleotide-binding domain and leucine-rich repeat containing (NLR) genes. However, resistances mediated by pattern recognition receptors (PRRs) remain less utilized. Here, our pipeline shows accelerated mapping of PRRs. Effectoromics leads to precise identification of plants with target PRRs, and subsequent RLP/K enrichment sequencing (RLP/KSeq) leads to detection of informative single nucleotide polymorphisms that are linked to the trait. Using Phytophthora infestans as a model, we identified Solanum microdontum plants that recognize the apoplastic effectors INF1 or SCR74. RLP/KSeq in a segregating Solanum population confirmed the localization of the INF1 receptor on chromosome 12, and led to the rapid mapping of the response to SCR74 to chromosome 9. By using markers obtained from RLP/KSeq in conjunction with additional markers, we fine-mapped the SCR74 receptor to a 43-kbp G-LecRK locus. Our findings show that RLP/KSeq enables rapid mapping of PRRs and is especially beneficial for crop plants with large and complex genomes. This work will enable the elucidation and characterization of the nonNLR plant immune receptors and ultimately facilitate informed resistance breeding.</p

    Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache

    Get PDF
    The ascomycete Mycosphaerella graminicola is the causal agent of septoria tritici blotch (STB), one of the most destructive foliar diseases of bread and durum wheat globally, particularly in temperate humid areas. A screening of the French bread wheat cultivars Apache and Balance with 30 M. graminicola isolates revealed a pattern of resistant responses that suggested the presence of new genes for STB resistance. Quantitative trait loci (QTL) analysis of a doubled haploid (DH) population with five M. graminicola isolates in the seedling stage identified four QTLs on chromosomes 3AS, 1BS, 6DS and 7DS, and occasionally on 7DL. The QTL on chromosome 6DS flanked by SSR markers Xgpw5176 and Xgpw3087 is a novel QTL that now can be designated as Stb18. The QTLs on chromosomes 3AS and 1BS most likely represent Stb6 and Stb11, respectively, and the QTLs on chromosome 7DS are most probably identical with Stb4 and Stb5. However, the QTL identified on chromosome 7DL is expected to be a new Stb gene that still needs further characterization. Multiple isolates were used and show that not all isolates identify all QTLs, which clearly demonstrates the specificity in the M. graminicola–wheat pathosystem. QTL analyses were performed with various disease parameters. The development of asexual fructifications (pycnidia) in the characteristic necrotic blotches of STB, designated as parameter P, identified the maximum number of QTLs. All other parameters identified fewer but not different QTLs. The segregation of multiple QTLs in the Apache/Balance DH population enabled the identification of DH lines with single QTLs and multiple QTL combinations. Analyses of the marker data of these DH lines clearly demonstrated the positive effect of pyramiding QTLs to broaden resistance spectra as well as epistatic and additive interactions between these QTLs. Phenotyping of the Apache/Balance DH population in the field confirmed the presence of the QTLs that were identified in the seedling stage, but Stb18 was inconsistently expressed and might be particularly effective in young plants. In contrast, an additional QTL for STB resistance was identified on chromosome 2DS that is exclusively and consistently expressed in mature plants over locations and time, but it was also strongly related with earliness, tallness as well as resistance to Fusarium head blight. Although to date no Stb gene has been reported on chromosome 2D, the data provide evidence that this QTL is only indirectly related to STB resistance. This study shows that detailed genetic analysis of contemporary commercial bread wheat cultivars can unveil novel Stb genes that can be readily applied in marker-assisted breeding programs
    corecore