7 research outputs found
Herramientas moleculares para estudiar las aguas de consumo humano del cacao, Mozonte, Nueva Segovia, Nicaragua
The principal microbiological indicators of the water quality for human consumption were determined by means of the most probable number (NMP) and the isolation joined identification by morphologic and molecular route of the microorganisms isolated from existing biofilm in the point of capture of the aquifer of the community El Cacao, city council Mozonte, Nueva Segovia. Sampling in 3 points: capture, storage and key of jet, and realizing analysis of the NMP, isolations, purification and morphologic tests in the laboratories of the National Program of Investigation Studies and Environmental Services (PIENSA) from National University of Engineering. The microbial sequences were in charge to Molecular Biology of the Central American University. The results indicate pollution by total coliforms, fecal and E.coli, which should be absent according to the norm of The Regional Committee of Institutions of Drinkable Water and sanitation of Central America, Panama and Dominican Republic (CAPRE). Bacterial were isolated from biofilm and identified as: Alcaligenes sp, Paenalcaligenes sp, Alcaligenes faecalis, Paenalcaligenes suwonensis, Proteus mirabilis, Serratia nematodiphilia and Stenotrophomona maltophilia. Filamentous fungi like Apergillus terreus and three isolated identified as aspergillus sp. These microorganisms have been reported in charge of diverse diseases transmitted by the water.Se determinaron los principales indicadores microbiológicos de la calidad del agua para consumo humano por medio del Numero Más Probable y se realizó el aislamiento e identificación por vía morfológica y molecular de los microorganismos aislados de la biopelícula existente en el punto de captación del acuífero de la comunidad El Cacao, municipio Mozonte, Nueva Segovia. Muestreando en 3 puntos: captación, almacenamiento y llave de chorro, y realizando análisis del número más probable (NMP), aislamientos, purificación y pruebas morfológicas en los laboratorios del Programa de Investigación Estudios Nacionales y Servicios Ambientales (PIENSA) de la Universidad Nacional de Ingeniería. La secuenciación microbiana se encargó a Biología Molecular de la Universidad Centroamericana. Los resultados indican contaminación por coliformes totales, fecales y E.coli, que deberían estar ausentes según la norma del Comité de Instituciones de Agua Potable y Saneamiento de Centroamérica, Panamá y República Dominicana (CAPRE). De la biopelícula se aisló e identificó bacterias como: Alcaligenes sp, Paenalcaligenes sp, Alcaligenes faecalis, Paenalcaligenes suwonensis, Proteus mirabilis, Serratia nematodiphilia y Stenotrophomona maltophilia, y hongos filamentosos como Apergillus terreus y tres aislados identificados como aspergillus sp. Estos microorganismos se han reportado como responsables de diversas enfermedades transmitidas por el agua
Herramientas moleculares para estudiar las aguas de consumo humano del cacao, Mozonte, Nueva Segovia, Nicaragua
The principal microbiological indicators of the water quality for human consumption were determined by means of the most probable number (NMP) and the isolation joined identification by morphologic and molecular route of the microorganisms isolated from existing biofilm in the point of capture of the aquifer of the community El Cacao, city council Mozonte, Nueva Segovia. Sampling in 3 points: capture, storage and key of jet, and realizing analysis of the NMP, isolations, purification and morphologic tests in the laboratories of the National Program of Investigation Studies and Environmental Services (PIENSA) from National University of Engineering. The microbial sequences were in charge to Molecular Biology of the Central American University. The results indicate pollution by total coliforms, fecal and E.coli, which should be absent according to the norm of The Regional Committee of Institutions of Drinkable Water and sanitation of Central America, Panama and Dominican Republic (CAPRE). Bacterial were isolated from biofilm and identified as: Alcaligenes sp, Paenalcaligenes sp, Alcaligenes faecalis, Paenalcaligenes suwonensis, Proteus mirabilis, Serratia nematodiphilia and Stenotrophomona maltophilia. Filamentous fungi like Apergillus terreus and three isolated identified as aspergillus sp. These microorganisms have been reported in charge of diverse diseases transmitted by the water.Se determinaron los principales indicadores microbiológicos de la calidad del agua para consumo humano por medio del Numero Más Probable y se realizó el aislamiento e identificación por vía morfológica y molecular de los microorganismos aislados de la biopelícula existente en el punto de captación del acuífero de la comunidad El Cacao, municipio Mozonte, Nueva Segovia. Muestreando en 3 puntos: captación, almacenamiento y llave de chorro, y realizando análisis del número más probable (NMP), aislamientos, purificación y pruebas morfológicas en los laboratorios del Programa de Investigación Estudios Nacionales y Servicios Ambientales (PIENSA) de la Universidad Nacional de Ingeniería. La secuenciación microbiana se encargó a Biología Molecular de la Universidad Centroamericana. Los resultados indican contaminación por coliformes totales, fecales y E.coli, que deberían estar ausentes según la norma del Comité de Instituciones de Agua Potable y Saneamiento de Centroamérica, Panamá y República Dominicana (CAPRE). De la biopelícula se aisló e identificó bacterias como: Alcaligenes sp, Paenalcaligenes sp, Alcaligenes faecalis, Paenalcaligenes suwonensis, Proteus mirabilis, Serratia nematodiphilia y Stenotrophomona maltophilia, y hongos filamentosos como Apergillus terreus y tres aislados identificados como aspergillus sp. Estos microorganismos se han reportado como responsables de diversas enfermedades transmitidas por el agua
Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae
A mechanistic, dynamic model was developed to predict infection of loquat fruit by conidia of Fusicladium eriobotryae, the
causal agent of loquat scab. The model simulates scab infection periods and their severity through the sub-processes of
spore dispersal, infection, and latency (i.e., the state variables); change from one state to the following one depends on
environmental conditions and on processes described by mathematical equations. Equations were developed using
published data on F. eriobotryae mycelium growth, conidial germination, infection, and conidial dispersion pattern. The
model was then validated by comparing model output with three independent data sets. The model accurately predicts the
occurrence and severity of infection periods as well as the progress of loquat scab incidence on fruit (with concordance
correlation coefficients .0.95). Model output agreed with expert assessment of the disease severity in seven loquatgrowing
seasons. Use of the model for scheduling fungicide applications in loquat orchards may help optimise scab
management and reduce fungicide applications.This work was funded by Cooperativa Agricola de Callosa d'En Sarria (Alicante, Spain). Three months' stay of E. Gonzalez-Dominguez at the Universita Cattolica del Sacro Cuore (Piacenza, Italy) was supported by the Programa de Apoyo a la Investigacion y Desarrollo (PAID-00-12) de la Universidad Politecnica de Valencia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.González Domínguez, E.; Armengol Fortí, J.; Rossi, V. (2014). Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae. PLoS ONE. 9(9):1-12. https://doi.org/10.1371/journal.pone.0107547S11299Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and Pathogenicity ofFusicladium eriobotryae, the Fungal Pathogen Responsible for Loquat Scab. Plant Disease, 93(11), 1151-1157. doi:10.1094/pdis-93-11-1151Gladieux, P., Caffier, V., Devaux, M., & Le Cam, B. (2010). Host-specific differentiation among populations of Venturia inaequalis causing scab on apple, pyracantha and loquat. Fungal Genetics and Biology, 47(6), 511-521. doi:10.1016/j.fgb.2009.12.007González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of Environmental Factors on Mycelial Growth and Conidial Germination ofFusicladium eriobotryae, and the Infection of Loquat Leaves. Plant Disease, 97(10), 1331-1338. doi:10.1094/pdis-02-13-0131-reGonzález-Domínguez, E., Rossi, V., Michereff, S. J., García-Jiménez, J., & Armengol, J. (2014). Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain. European Journal of Plant Pathology, 139(4), 849-861. doi:10.1007/s10658-014-0439-0Becker, C. M. (1994). Discontinuous Wetting and Survival of Conidia ofVenturia inaequalison Apple Leaves. Phytopathology, 84(4), 372. doi:10.1094/phyto-84-372Hartman, J. R., Parisi, L., & Bautrais, P. (1999). Effect of Leaf Wetness Duration, Temperature, and Conidial Inoculum Dose on Apple Scab Infections. Plant Disease, 83(6), 531-534. doi:10.1094/pdis.1999.83.6.531Holb, I. J., Heijne, B., Withagen, J. C. M., & Jeger, M. J. (2004). Dispersal of Venturia inaequalis Ascospores and Disease Gradients from a Defined Inoculum Source. Journal of Phytopathology, 152(11-12), 639-646. doi:10.1111/j.1439-0434.2004.00910.xRossi, V., Giosue, S., & Bugiani, R. (2003). Influence of Air Temperature on the Release of Ascospores of Venturia inaequalis. Journal of Phytopathology, 151(1), 50-58. doi:10.1046/j.1439-0434.2003.00680.xStensvand, A., Gadoury, D. M., Amundsen, T., Semb, L., & Seem, R. C. (1997). Ascospore Release and Infection of Apple Leaves by Conidia and Ascospores ofVenturia inaequalisat Low Temperatures. Phytopathology, 87(10), 1046-1053. doi:10.1094/phyto.1997.87.10.1046Machardy WE (1996) Apple scab. Biology, epidemiology and management. St. Paul: APS Press. 545.James, J. R. (1982). Environmental Factors Influencing Pseudothecial Development and Ascospore Maturation ofVenturia inaequalis. Phytopathology, 72(8), 1073. doi:10.1094/phyto-72-1073Li, B., Zhao, H., Li, B., & Xu, X.-M. (2003). Effects of temperature, relative humidity and duration of wetness period on germination and infection by conidia of the pear scab pathogen (Venturia nashicola). Plant Pathology, 52(5), 546-552. doi:10.1046/j.1365-3059.2003.00887.xLi, B.-H., Xu, X.-M., Li, J.-T., & Li, B.-D. (2005). Effects of temperature and continuous and interrupted wetness on the infection of pear leaves by conidia of Venturia nashicola. Plant Pathology, 54(3), 357-363. doi:10.1111/j.1365-3059.2005.01207.xUMEMOTO, S. (1990). Dispersion of ascospores and conidia of causal fungus of Japanese pear scab, Venturia nashicola. Japanese Journal of Phytopathology, 56(4), 468-473. doi:10.3186/jjphytopath.56.468Rossi, V., Salinari, F., Pattori, E., Giosuè,, S., & Bugiani, R. (2009). Predicting the Dynamics of Ascospore Maturation ofVenturia pirinaBased on Environmental Factors. Phytopathology, 99(4), 453-461. doi:10.1094/phyto-99-4-0453Spotts, R. A. (1991). Effect of Temperature and Wetness on Infection of Pear byVenturia pirinaand the Relationship Between Preharvest Inoculation and Storage Scab. Plant Disease, 75(12), 1204. doi:10.1094/pd-75-1204Spotts, R. A. (1994). Factors Affecting Maturation and Release of Ascospores ofVenturia pirinain Oregon. Phytopathology, 84(3), 260. doi:10.1094/phyto-84-260Villalta, O., Washington, W. S., Rimmington, G. M., & Taylor, P. A. (2000). Australasian Plant Pathology, 29(4), 255. doi:10.1071/ap00048Villalta, O. N., Washington, W. S., Rimmington, G. M., & Taylor, P. A. (2000). Effects of temperature and leaf wetness duration on infection of pear leaves by Venturia pirina. Australian Journal of Agricultural Research, 51(1), 97. doi:10.1071/ar99068Lan, Z., & Scherm, H. (2003). Moisture Sources in Relation to Conidial Dissemination and Infection byCladosporium carpophilumWithin Peach Canopies. Phytopathology, 93(12), 1581-1586. doi:10.1094/phyto.2003.93.12.1581Lawrence, Jr., E. G. (1982). Environmental Effects on the Development and Dissemination ofCladosporium carpophilumon Peach. Phytopathology, 72(7), 773. doi:10.1094/phyto-72-773Gottwald, T. R. (1985). Influence of Temperature, Leaf Wetness Period, Leaf Age, and Spore Concentration on Infection of Pecan Leaves by Conidia ofCladosporium caryigenum. Phytopathology, 75(2), 190. doi:10.1094/phyto-75-190Latham, A. J. (1982). Effects of Some Weather Factors andFusicladium effusumConidium Dispersal on Pecan Scab Occurrence. Phytopathology, 72(10), 1339. doi:10.1094/phyto-72-1339MARZO, L., FRISULLO, S., LOPS, F., & ROSSI, V. (1993). Possible dissemination of Spilocaea oleagina conidia by insects (Ectopsocus briggsi). EPPO Bulletin, 23(3), 389-391. doi:10.1111/j.1365-2338.1993.tb01341.xLOPS, F., FRISULLO, S., & ROSSI, V. (1993). Studies on the spread of the olive scab pathogen, Spilocaea oleagina. EPPO Bulletin, 23(3), 385-387. doi:10.1111/j.1365-2338.1993.tb01340.xObanor, F. O., Walter, M., Jones, E. E., & Jaspers, M. V. (2007). Effect of temperature, relative humidity, leaf wetness and leaf age on Spilocaea oleagina conidium germination on olive leaves. European Journal of Plant Pathology, 120(3), 211-222. doi:10.1007/s10658-007-9209-6Obanor, F. O., Walter, M., Jones, E. E., & Jaspers, M. V. (2010). Effects of temperature, inoculum concentration, leaf age, and continuous and interrupted wetness on infection of olive plants by Spilocaea oleagina. Plant Pathology, 60(2), 190-199. doi:10.1111/j.1365-3059.2010.02370.xViruega, J. R., Moral, J., Roca, L. F., Navarro, N., & Trapero, A. (2013). Spilocaea oleaginain Olive Groves of Southern Spain: Survival, Inoculum Production, and Dispersal. Plant Disease, 97(12), 1549-1556. doi:10.1094/pdis-12-12-1206-reViruega, J. R., Roca, L. F., Moral, J., & Trapero, A. (2011). Factors Affecting Infection and Disease Development on Olive Leaves Inoculated withFusicladium oleagineum. Plant Disease, 95(9), 1139-1146. doi:10.1094/pdis-02-11-0126Eikemo, H., Gadoury, D. M., Spotts, R. A., Villalta, O., Creemers, P., Seem, R. C., & Stensvand, A. (2011). Evaluation of Six Models to Estimate Ascospore Maturation in Venturia pyrina. Plant Disease, 95(3), 279-284. doi:10.1094/pdis-02-10-0125Li, B.-H., Yang, J.-R., Dong, X.-L., Li, B.-D., & Xu, X.-M. (2007). A dynamic model forecasting infection of pear leaves by conidia of Venturia nashicola and its evaluation in unsprayed orchards. European Journal of Plant Pathology, 118(3), 227-238. doi:10.1007/s10658-007-9138-4Rossi, V., Giosuè, S., & Bugiani, R. (2007). A-scab (Apple-scab), a simulation model for estimating risk of Venturia inaequalis primary infections. EPPO Bulletin, 37(2), 300-308. doi:10.1111/j.1365-2338.2007.01125.xXU, X.-M., BUTT, D. J., & SANTEN, G. (1995). A dynamic model simulating infection of apple leaves by Venturia inaequalis. Plant Pathology, 44(5), 865-876. doi:10.1111/j.1365-3059.1995.tb02746.xRoubal, C., Regis, S., & Nicot, P. C. (2012). Field models for the prediction of leaf infection and latent period ofFusicladium oleagineumon olive based on rain, temperature and relative humidity. Plant Pathology, 62(3), 657-666. doi:10.1111/j.1365-3059.2012.02666.xPayne, A. F., & Smith, D. L. (2012). Development and Evaluation of Two Pecan Scab Prediction Models. Plant Disease, 96(9), 1358-1364. doi:10.1094/pdis-03-11-0202-reTrapman M, Jansonius PJ (2008) Disease management in organic apple orchards is more than applying the right product at the correct time. Ecofruit-13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing: Proceedings to the Conference from 18th February to 20th February 2008 at Weinsberg/Germany. 16–22.HOLB, I. J., JONG, P. F., & HEIJNE, B. (2003). Efficacy and phytotoxicity of lime sulphur in organic apple production. Annals of Applied Biology, 142(2), 225-233. doi:10.1111/j.1744-7348.2003.tb00245.xGent, D. H., Mahaffee, W. F., McRoberts, N., & Pfender, W. F. (2013). The Use and Role of Predictive Systems in Disease Management. Annual Review of Phytopathology, 51(1), 267-289. doi:10.1146/annurev-phyto-082712-102356Alavanja, M. C. R., Hoppin, J. A., & Kamel, F. (2004). Health Effects of Chronic Pesticide Exposure: Cancer and Neurotoxicity. Annual Review of Public Health, 25(1), 155-197. doi:10.1146/annurev.publhealth.25.101802.123020Brent KJ, Hollomon DW (2007) Fungicide resistance in crop pathogens: How can it be managed? FRAC Monog 2. Fungicide Resistance Action Committee.Shtienberg, D. (2013). Will Decision-Support Systems Be Widely Used for the Management of Plant Diseases? Annual Review of Phytopathology, 51(1), 1-16. doi:10.1146/annurev-phyto-082712-102244Leffelaar P (1993) On Systems Analysis and Simulation of Ecological Processes. Kluwer. London.Rossi V, Giosuè S, Caffi T (2010) Modelling plant diseases for decision making in crop protection. In: Oerke E-C, Gerhards R, Menz G, Sikora RA, editors. Precision Crop Protection-the Challenge and Use of Heterogeneity.Hui, C. (2006). Carrying capacity, population equilibrium, and environment’s maximal load. Ecological Modelling, 192(1-2), 317-320. doi:10.1016/j.ecolmodel.2005.07.001Townsend C, Begon M, Harper J (2008) Essentials of ecology. John Wiley and Sons. New York. 510.Zadoks J, Schein R (1979) Epidemiology and plant disease management. Oxford University Press, New York. 427.Bennett, J. C., Diggle, A., Evans, F., & Renton, M. (2013). Assessing eradication strategies for rain-splashed and wind-dispersed crop diseases. Pest Management Science, 69(8), 955-963. doi:10.1002/ps.3459Ghanbarnia, K., Dilantha Fernando, W. G., & Crow, G. (2009). Developing Rainfall- and Temperature-Based Models to Describe Infection of Canola Under Field Conditions Caused by Pycnidiospores of Leptosphaeria maculans. Phytopathology, 99(7), 879-886. doi:10.1094/phyto-99-7-0879Gilligan, C. A., & van den Bosch, F. (2008). Epidemiological Models for Invasion and Persistence of Pathogens. Annual Review of Phytopathology, 46(1), 385-418. doi:10.1146/annurev.phyto.45.062806.094357Buck, A. L. (1981). New Equations for Computing Vapor Pressure and Enhancement Factor. Journal of Applied Meteorology, 20(12), 1527-1532. doi:10.1175/1520-0450(1981)0202.0.co;2Madden L V, Hughes G, van den Bosch F (2007) The study of plant disease epidemics. APS press. St. Paul. 421.González-Domínguez E, Rodríguez-Reina J, García-Jiménez J, Armengol J (2014) Evaluation of fungicides to control loquat scab caused by Fusicladium eriobotryae. Plant Heal Prog Accepted.De Wolf, E. D., & Isard, S. A. (2007). Disease Cycle Approach to Plant Disease Prediction. Annual Review of Phytopathology, 45(1), 203-220. doi:10.1146/annurev.phyto.44.070505.143329Krause, R. A., & Massie, L. B. (1975). Predictive Systems: Modern Approaches to Disease Control. Annual Review of Phytopathology, 13(1), 31-47. doi:10.1146/annurev.py.13.090175.000335Fourie, P., Schutte, T., Serfontein, S., & Swart, F. (2013). Modeling the Effect of Temperature and Wetness on Guignardia Pseudothecium Maturation and Ascospore Release in Citrus Orchards. Phytopathology, 103(3), 281-292. doi:10.1094/phyto-07-11-0194Gadoury, D. M. (1982). A Model to Estimate the Maturity of Ascospores ofVenturia inaequalis. Phytopathology, 72(7), 901. doi:10.1094/phyto-72-901Holtslag, Q. A., Remphrey, W. R., Fernando, W. G. D., St-Pierre, R. G., & Ash, G. H. B. (2004). The development of a dynamic diseaseforecasting model to controlEntomosporium mespilionAmelanchier alnifolia. Canadian Journal of Plant Pathology, 26(3), 304-313. doi:10.1080/07060660409507148Legler SEE, Caffi T, Rossi V (2013) A Model for the development of Erysiphe necator chasmothecia in vineyards. Plant Pathol. DOI:10.1111/ppa.12145.Luo, Y., & Michailides, T. J. (2001). Risk Analysis for Latent Infection of Prune by Monilinia fructicola in California. Phytopathology, 91(12), 1197-1208. doi:10.1094/phyto.2001.91.12.1197Gadoury, D. M. (1986). Forecasting Ascospore Dose of Venturia inaequalis in Commercial Apple Orchards. Phytopathology, 76(1), 112. doi:10.1094/phyto-76-112Gent, D. H., De Wolf, E., & Pethybridge, S. J. (2011). Perceptions of Risk, Risk Aversion, and Barriers to Adoption of Decision Support Systems and Integrated Pest Management: An Introduction. Phytopathology, 101(6), 640-643. doi:10.1094/phyto-04-10-0124Schut, M., Rodenburg, J., Klerkx, L., van Ast, A., & Bastiaans, L. (2014). Systems approaches to innovation in crop protection. A systematic literature review. Crop Protection, 56, 98-108. doi:10.1016/j.cropro.2013.11.017Mills W, Laplante A (1954) Diseases and insect in the orchard. Cornell Ext Bull 711.GVA (2013) Octubre-Noviembre 2013. Butlletí d’avisos 13.MacHardy, W. E. (1989). A Revision of Mills’s Criteria for Predicting Apple Scab Infection Periods. Phytopathology, 79(3), 304. doi:10.1094/phyto-79-30
Herramientas moleculares para estudiar las aguas de consumo humano del cacao, Mozonte, Nueva Segovia, Nicaragua
The principal microbiological indicators of the water quality for human consumption were determined by means of the most probable number (NMP) and the isolation joined identification by morphologic and molecular route of the microorganisms isolated from existing biofilm in the point of capture of the aquifer of the community El Cacao, city council Mozonte, Nueva Segovia. Sampling in 3 points: capture, storage and key of jet, and realizing analysis of the NMP, isolations, purification and morphologic tests in the laboratories of the National Program of Investigation Studies and Environmental Services (PIENSA) from National University of Engineering. The microbial sequences were in charge to Molecular Biology of the Central American University. The results indicate pollution by total coliforms, fecal and E.coli, which should be absent according to the norm of The Regional Committee of Institutions of Drinkable Water and sanitation of Central America, Panama and Dominican Republic (CAPRE). Bacterial were isolated from biofilm and identified as: Alcaligenes sp, Paenalcaligenes sp, Alcaligenes faecalis, Paenalcaligenes suwonensis, Proteus mirabilis, Serratia nematodiphilia and Stenotrophomona maltophilia. Filamentous fungi like Apergillus terreus and three isolated identified as aspergillus sp. These microorganisms have been reported in charge of diverse diseases transmitted by the water.Se determinaron los principales indicadores microbiológicos de la calidad del agua para consumo humano por medio del Numero Más Probable y se realizó el aislamiento e identificación por vía morfológica y molecular de los microorganismos aislados de la biopelícula existente en el punto de captación del acuífero de la comunidad El Cacao, municipio Mozonte, Nueva Segovia. Muestreando en 3 puntos: captación, almacenamiento y llave de chorro, y realizando análisis del número más probable (NMP), aislamientos, purificación y pruebas morfológicas en los laboratorios del Programa de Investigación Estudios Nacionales y Servicios Ambientales (PIENSA) de la Universidad Nacional de Ingeniería. La secuenciación microbiana se encargó a Biología Molecular de la Universidad Centroamericana. Los resultados indican contaminación por coliformes totales, fecales y E.coli, que deberían estar ausentes según la norma del Comité de Instituciones de Agua Potable y Saneamiento de Centroamérica, Panamá y República Dominicana (CAPRE). De la biopelícula se aisló e identificó bacterias como: Alcaligenes sp, Paenalcaligenes sp, Alcaligenes faecalis, Paenalcaligenes suwonensis, Proteus mirabilis, Serratia nematodiphilia y Stenotrophomona maltophilia, y hongos filamentosos como Apergillus terreus y tres aislados identificados como aspergillus sp. Estos microorganismos se han reportado como responsables de diversas enfermedades transmitidas por el agua
DerEditor4GL: Software para la docencia en el diseño de Bases de Datos
El presente trabajo presenta el desarrollo de una
herramienta CASE (Computer-Aided Software
Engineering) llamada DerEditor4GL [11], que
genera lenguaje lógico conceptual y lenguaje SQL
(Structured Query Language). Esta herramienta
está pensada para su uso en la enseñanza de la
asignatura Bases de Datos II, impartida a los
alumnos de tercer curso de Ingeniería Técnica en
Informática, especialidad Gestión.
Los objetivos de esta aplicación gráfica son
por un lado, facilitar la compresión de las distintas
fases de diseño por las que pasa un sistema de
información antes de ser procesado en un
computador, por otro, permitir la visualización del
esquema conceptual y lógico, y finalmente, la
generación del código asociado a cada uno de los
objetos de representación, en tiempo real y de
forma transparente al usuario.
Esta herramienta CASE va a ser utilizada en
las prácticas de la asignatura Bases de Datos II
dentro de la titulación de Ingeniería Técnica en
Informática de Gestión de la Escuela Universitaria
Politécnica de Teruel.SIN FINANCIACIÓNNo data (2005
Genomic Designing for Climate-Smart Tomato
Tomato is the first vegetable consumed in the world. It is grown in very different conditions and areas, mainly in field for processing tomatoes while fresh-market tomatoes are often produced in greenhouses. Tomato faces many environmental stresses, both biotic and abiotic. Today many new genomic resources are available allowing an acceleration of the genetic progress. In this chapter, we will first present the main challenges to breed climate-smart tomatoes. The breeding objectives relative to productivity, fruit quality, and adaptation to environmental stresses will be presented with a special focus on how climate change is impacting these objectives. In the second part, the genetic and genomic resources available will be presented. Then, traditional and molecular breeding techniques will be discussed. A special focus will then be presented on ecophysiological modeling, which could constitute an important strategy to define new ideotypes adapted to breeding objectives. Finally, we will illustrate how new biotechnological tools are implemented and could be used to breed climate-smart tomatoes