186 research outputs found

    Preparation and Electrophoretic deposition of Zirconium dioxide nano-composite on Ti-6Al-4V for biomedical applications

    Get PDF
    Abstract: The advancement of nano-science and nano-technology produces intriguing changes for the existing materials applications. In biomaterial science, especially inorganic materials such as silica, zinc oxide, zirconium dioxide, and titanium dioxide have been prepared by various methods including sol-gel synthesis. In sol-gel synthesis, nano-particles are produced and have been used for various applications and applied in surface modification of implantable biomaterials like metals. Ceramic materials are having more biocompatibility, bio-inert, less corrosion resistant properties when implanted into the physiological system. Various coating methods have been proposed of which, Electrophoretic technique (EPD) is an old and convenient method and can be applied in complex shaped structures. In this paper, the sol-gel prepared zirconium dioxide, zinc oxide nano-particles were mixed to attain better hard coatings with antibacterial properties to avoid bacterial contamination during implantation and removal surgery with less interfacial bonding between substrate and tissue when removable implants employed such as bone plates and bone screws. The prepared materials and its composite were characterized by FT-IR, XRD. The corrosion resistant property of the EPD coated Ti-6Al-4V was studied by electrochemical techniques such as polarization (Tafel) and EIS analysis. The results of study was clearly demonstrates a uniform homogeneous hard coating with increased corrosion resistant values comparing to the blank Ti-6Al-4V

    Physio-Chemical and Biological Characterization of Novel HPC (Hydroxypropylcellulose):HAP (Hydroxyapatite):PLA (Poly Lactic Acid) Electrospun Nanofibers as Implantable Material for Bone Regenerative Application

    Get PDF
    The research on extracellular matrix (ECM) is new and developing area that covers cell proliferation and differentiation and ensures improved cell viability for different biomedical applications. Extracellular matrix not only maintains biological functions but also exhibits properties such as tuned or natural material degradation within a given time period, active cell binding and cellular uptake for tissue engineering applications. The principal objective of this study is classified into two categories. The first phase is optimization of various electrospinning parameters with different concentrations of HAP-HPC/PLA(hydroxyapatite-hydroxypropylcellulose/poly lactic acid). The second phase is in vitro biological evaluation of the optimized mat using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay for bone regeneration applications. Conductivity and dielectric constant were optimized for the production of thin fiber and bead free nanofibrous mat. With this optimization, the mechanical strength of all compositions was found to be enhanced, of which the ratio of 70:30 hit a maximum of 9.53 MPa (megapascal). Cytotoxicity analysis was completed for all the compositions on MG63 cell lines for various durations and showed maximum cell viability on 70:30 composition for more than 48 hrs. Hence, this investigation concludes that the optimized nanofibrous mat can be deployed as an ideal material for bone regenerative applications. In vivo study confirms the HAP-HPC-PLA sample shows more cells and bone formation at 8 weeks than 4 weeks. © 2022 by the authors

    Data mining and wireless sensor network for agriculture pest/disease predictions

    Get PDF
    Data driven precision agriculture aspects, particularly the pest/disease management, require a dynamic crop-weather data. An experiment was conducted in a semi-arid region to understand the crop-weather-pest/disease relations using wireless sensory and field-level surveillance data on closely related and interdependent pest (Thrips) - disease (Bud Necrosis) dynamics of groundnut crop. Data mining techniques were used to turn the data into useful information/knowledge/relations/trends and correlation of crop-weather-pest/ disease continuum. These dynamics obtained from the data mining techniques and trained through mathematical models were validated with corresponding surveillance data. Results obtained from 2009 & 2010 kharif seasons (monsoon) and 2009-10 & 2010-11 rabi seasons (post monsoon) data could be used to develop a real to near real-time decision support system for pest/disease predictions

    Effects of variation in posture and respiration on RSA and pre-ejection period

    Get PDF
    The extent to which variation in posture and respiration can confound pre-ejection period and respiratory sinus arrhythmia (RSA) as indices of cardiac sympatho-vagal activity was examined. Within-subjects changes in these measures were assessed in 36 subjects during different postures and (paced) respiratory frequencies. Changes from supine to sitting to standing led to reduced RSA values and longer pre-ejection periods, reflecting the known decrease in vagal but not the increase of sympathetic activity. Multilevel path analysis showed that within-subjects changes in sympatho-vagal balance were faithfully reflected by changes in interbeat interval, but imperfectly by changes in RSA and pre-ejection period. It was concluded that pre-ejection period should be stratified for posture and RSA for respiratory frequency to reliably index changes in sympatho-vagal balance when these factors are prone to change (e.g., during 24-h ambulatory recording). Copyright © 2005 Society for Psychophysiological Research

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF

    Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil

    Get PDF
    Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe
    corecore