133 research outputs found

    The role of the thymus in immunosenescence: lessons from the study of thymectomized individuals

    Get PDF
    The thymus is the major site of T cell production and a key organ of the immune system. Its natural involution during the course of life has cast doubts as to its importance for the integrity of our immunity in adulthood. We provide here an overview of the recent works focusing on the immunological evaluation of subjects thymectomized during early childhood due to cardiac surgery of congenital heart defects. These studies represent new advances in our appreciation of the role of the thymus in humans and more generally in our understanding of the development of immunosenescence

    The TLR9 ligand CpG ODN 2006 is a poor adjuvant for the induction of de novo CD8+ T-cell responses in vitro

    Get PDF
    Toll-like receptor 9 (TLR9) agonists have gained traction in recent years as potential adjuvants for the induction of adaptive immune responses. It has nonetheless remained unclear to what extent such ligands can facilitate the priming events that generate antigen-specific effector and/or memory CD8+ T-cell populations. We used an established in vitro model to prime naive precursors from human peripheral blood mononuclear cells in the presence of various adjuvants, including CpG ODN 2006, a synthetic oligonucleotide TLR9 ligand (TLR9L). Unexpectedly, we found that TLR9L induced a suboptimal inflammatory milieu and promoted the antigen-driven expansion and functional maturation of naive CD8+ T cells ineffectively compared with either ssRNA40 or 2′3′-cGAMP, which activate other pattern recognition receptors (PRRs). TLR9L also inhibited the priming efficacy of 2′3′-cGAMP. Collectively, these results suggest that TLR9L is unlikely to be a good candidate for the optimal induction of de novo CD8+ T-cell responses, in contrast to adjuvants that operate via discrete PRRs

    Naïve CD8+ T-Cells Engage a Versatile Metabolic Program Upon Activation in Humans and Differ Energetically From Memory CD8+ T-Cells

    Get PDF
    Background: Characterization of the intracellular biochemical processes that regulate the generation and maintenance of effector and memory CD8+ T-cells from naïve precursors is essential for our understanding of adaptive immune responses and the development of immunotherapies. However, the metabolic determinants of antigen-driven activation and differentiation remain poorly defined, especially in humans.Methods: We used a variety of different approaches, including gene expression profiling and measurements of nutrient flux, to characterize the basal and activation-induced energetic requirements of naïve and phenotypically-defined subsets of human memory CD8+ T-cells.Findings: Profound metabolic differences were apparent as a function of differentiation status, both at rest and in response to stimulation via the T cell receptor (TCR). Of particular note, resting naïve CD8+ T cells were largely quiescent, but rapidly upregulated diverse energetic pathways after ligation of surface-expressed TCRs. Moreover, autophagy and the mechanistic target of rapamycin (mTOR)-dependent glycolytic pathway were identified as critical mediators of antigen-driven priming in the naïve CD8+ T cell pool, the efficiency of which was dampened by the presence of neutral lipids and fatty acids.Interpretation: These observations provide a metabolic roadmap of the CD8+ T-cell compartment in humans and reveal potentially selective targets for novel immunotherapies

    Characterization of Melan-A reactive memory CD8+ T cells in a healthy donor

    Get PDF
    Melan-A specific CD8+ T cells are thought to play an important role against the development of melanoma. Their in vivo expansion is often observed with advanced disease. In recent years, low levels of Melan-A reactive CD8+ T cells have also been found in HLA-A2 healthy donors, but these cells harbor naive characteristics and are thought to be mostly cross-reactive for the Melan-A antigen. Here, we report on a large population of CD8+ T cells reactive for the Melan-A antigen, identified in one donor with no evidence of melanoma. Interestingly, this population is oligoclonal and displays a clear memory phenotype. However, a detailed study of these cells indicated that they are unlikely to be directly specific for melanoma, so that their in vivo expansion may have been driven by an exogenous antigen. Screening of a Melan-A cross-reactive peptide library suggested that these cells may be specific for an epitope derived from a Mycobacterium protein, which would provide a further example of CD8+ T cell cross-reactivity between a pathogen antigen and a tumor antigen. Finally, we discuss potential perspectives regarding the role of such cells in heterologous immunity, by influencing the balance between protective immunity and pathology, e.g. in the case of melanoma developmen

    Immune Activation and CD8(+) T-Cell Differentiation towards Senescence in HIV-1 Infection

    Get PDF
    Progress in the fight against the HIV/AIDS epidemic is hindered by our failure to elucidate the precise reasons for the onset of immunodeficiency in HIV-1 infection. Increasing evidence suggests that elevated immune activation is associated with poor outcome in HIV-1 pathogenesis. However, the basis of this association remains unclear. Through ex vivo analysis of virus-specific CD8(+) T-cells and the use of an in vitro model of naïve CD8(+) T-cell priming, we show that the activation level and the differentiation state of T-cells are closely related. Acute HIV-1 infection induces massive activation of CD8(+) T-cells, affecting many cell populations, not only those specific for HIV-1, which results in further differentiation of these cells. HIV disease progression correlates with increased proportions of highly differentiated CD8(+) T-cells, which exhibit characteristics of replicative senescence and probably indicate a decline in T-cell competence of the infected person. The differentiation of CD8(+) and CD4(+) T-cells towards a state of replicative senescence is a natural process. It can be driven by excessive levels of immune stimulation. This may be part of the mechanism through which HIV-1-mediated immune activation exhausts the capacity of the immune system

    Reduced naïve CD8+T-cell priming efficacy in elderly adults

    Get PDF
    International audienceAging is associated with impaired vaccine efficacy and increased susceptibility to infectious and malignant diseases. CD8 + T-cells are key players in the immune response against pathogens and tumors. In aged mice, the dwindling na€ ıve CD8 + T-cell compartment is thought to compromise the induction of de novo immune responses, but no experimental evidence is yet available in humans. Here, we used an original in vitro assay based on an accelerated dendritic cell coculture system in unfractioned peripheral blood mononuclear cells to examine CD8 + T-cell priming efficacy in human volunteers. Using this approach, we report that old individuals consistently mount quantitatively and qualitatively impaired de novo CD8 + T-cell responses specific for a model antigen. Reduced CD8 + T-cell priming capacity in vitro was further associated with poor primary immune responsiveness in vivo. This immune deficit likely arises as a consequence of intrinsic cellular defects and a reduction in the size of the na€ ıve CD8 + T-cell pool. Collectively, these findings provide new insights into the cellular immune insufficiencies that accompany human aging

    Differentiation associated regulation of microRNA expression in vivo in human CD8+ T cell subsets

    Get PDF
    BACKGROUND: The differentiation of CD8+ T lymphocytes following priming of naïve cells is central in the establishment of the adaptive immune response. Yet, the molecular events underlying this process are not fully understood. MicroRNAs have been recently shown to play a key role in the regulation of haematopoiesis in mouse, but their implication in peripheral lymphocyte differentiation in humans remains largely unknown. METHODS: In order to explore the potential implication of microRNAs in CD8+ T cell differentiation in humans, microRNA expression profiles were analysed using microarrays and quantitative PCR in several human CD8+ T cell subsets defining the major steps of the T cell differentiation pathway. RESULTS: We found expression of a limited set of microRNAs, including the miR-17~92 cluster. Moreover, we reveal the existence of differentiation-associated regulation of specific microRNAs. When compared to naive cells, miR-21 and miR-155 were indeed found upregulated upon differentiation to effector cells, while expression of the miR-17~92 cluster tended to concomitantly decrease. CONCLUSIONS: This study establishes for the first time in a large panel of individuals the existence of differentiation associated regulation of microRNA expression in human CD8+ T lymphocytes in vivo, which is likely to impact on specific cellular functions
    corecore