41 research outputs found

    Expression and analysis of the glycosylation properties of recombinant human erythropoietin expressed in Pichia pastoris

    Get PDF
    The Pichia pastoris expression system was used to produce recombinant human erythropoietin, a protein synthesized by the adult kidney and responsible for the regulation of red blood cell production. The entire recombinant human erythropoietin (rhEPO) gene was constructed using the Splicing by Overlap Extension by PCR (SOE-PCR) technique, cloned and expressed through the secretory pathway of the Pichia expression system. Recombinant erythropoietin was successfully expressed in P. pastoris. The estimated molecular mass of the expressed protein ranged from 32 kDa to 75 kDa, with the variation in size being attributed to the presence of rhEPO glycosylation analogs. A crude functional analysis of the soluble proteins showed that all of the forms were active in vivo

    Real-Time Cytotoxicity Assay for Rapid and Sensitive Detection of Ricin from Complex Matrices

    Get PDF
    BACKGROUND: In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. METHODOLOGY/FINDINGS: This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index-time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. CONCLUSIONS/SIGNIFICANCE: The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex sample matrices

    Engineering Yarrowia lipolytica to Produce Glycoproteins Homogeneously Modified with the Universal Man3GlcNAc2 N-Glycan Core

    Get PDF
    Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as “generally recognized as safe.” Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man3GlcNAc2 structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man5GlcNAc2 and GlcMan5GlcNAc2 glycans, and to a lesser extent with Glc2Man5GlcNAc2 glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man3GlcNAc2 structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man3GlcNAc2), which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans

    Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    Get PDF
    Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a ‘selfish’ model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet

    Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88

    Get PDF
    The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis

    In vivo synthesis of complex N-glycans by expression of human N-acetylglucosaminyltransferase I in the filamentous fungus Trichoderma reesei

    No full text
    The human N-acetylglucosaminyltransferase I gene was introduced in the genome of Trichoderma reesei strain VTT-D-80133. Expression was studied after induction from the cellobiohydrolase I promoter. Successful in vivo transfer of GlcNAc was demonstrated by analyzing the neutral N-glycans which were synthesized on cellobiohydrolase I. Final proof of the formation of GlcNAcMan5GlcNAc2 was obtained by NMR analysis.status: publishe

    Heterologous Glycoprotein Production (Yeast)

    No full text

    Recombinant expression of trypanosome surface glycoproteins in Pichia pastoris for the diagnosis of Trypanosoma evansi infection

    No full text
    Serodiagnosis of surra, which causes vast economic losses in livestock, is still based on native antigens purified from bloodstream form Trypanosoma (T.) evansi grown in rodents. To avoid the use of laboratory rodents in antigen preparation we expressed fragments of the invariant surface glycoprotein (ISG) 75, cloned from T. brucei gambiense cDNA, and the variant surface glycoprotein (VSG) RoTat 1.2, cloned from T. evansi gDNA, recombinantly in Pichia (P.) pastoris. The M5 strain of this yeast has an engineered N-glycosylation pathway resulting in homogenous Man5GlcNAc2 N-glycosylation which resembles the predominant Man9-5GlcNAc2 oligomannose structures in T. brucei. The secreted recombinant antigens were affinity purified with yields of up to 10mg and 20mg per liter cell culture of rISG 7529-465-E and rRoTat 1.223-385-H respectively. In ELISA, both recombinant proteins discriminated between pre-immune and immune serum samples of 25 goats experimentally infected with T. evansi. The diagnostic potential of rRoTat 1.223-385-H but not of rISG 7529-465-E was confirmed with sera of naturally infected and control dromedary camels. The results suggest that rRoTat 1.223-385-H expressed in P. pastoris requires further evaluation before it could replace native RoTat 1.2 VSG for serodiagnosis of surra, thus eliminating the use of laboratory animals for antigen production
    corecore