708 research outputs found

    Alleviation of pressure pulse effects for trains entering tunnels. Volume 1: Summary

    Get PDF
    The degree to which it is possible to attenuate the effects of pressure pulses on the passengers in trains entering tunnels by modifying the normally abrupt portal of a constant-diameter single track tunnel was investigated. Although the suggested modifications to the tunnel entrance portal may not appreciably decrease the magnitude of the pressure rise, they are very effective in reducing the discomfort to the human ear by substantially decreasing the rate of pressure rise to that which the normal ear can accommodate. Qualitative comparison was made of this portal modification approach with other approaches: decreasing the train speed or sealing the cars. The optimum approach, which is dependent upon the conditions and requirements of each particular rail system, is likely to be the portal modification one for a rapid rail mass transit system

    Pre-stack full waveform inversion of ultra-high-frequency marine seismic reflection data

    Get PDF
    The full waveform inversion (FWI) of seismic reflection data aims to reconstruct a detailed physical properties model of the subsurface, fitting both the amplitude and the traveltime of the reflections generated at physical discontinuities in the propagation medium. Unlike reservoir-scale seismic exploration, where seismic inversion is a widely adopted remote characterization tool, ultrahigh-frequency (UHF, 0.2–4.0 kHz) multichannel marine reflection seismology is still most often limited to a qualitative interpretation of the reflections’ architecture. Here we propose an elastic FWI methodology, custom-tailored for pre-stack UHF marine data in vertically heterogeneous media to obtain a decimetric-scale distribution of P-impedance, density and Poisson’s ratio within the shallow subseabed sediments. We address the deterministic multiparameter inversion in a sequential fashion. The complex trace instantaneous phase is first inverted for the P-wave velocity to make up for the lack of low frequency in the data and reduce the nonlinearity of the problem. This is followed by a short-offset P-impedance optimization and a further step of full offset range Poisson’s ratio inversion. Provided that the seismogram contains wide reflection angles (>40°), we show that it is possible to invert for density and decompose a posteriori the relative contribution of P-wave velocity and density to the P-impedance. A broad range of synthetic tests is used to prove the potential of the methodology and highlights sensitivity issues specific to UHF seismic. An example application to real data is also presented. In the real case, trace normalization is applied to minimize the systematic error deriving from an inaccurate source wavelet estimation. The inverted model for the top 15 m of the subseabed agrees with the local lithological information and core-log data. Thus, we can obtain a detailed remote characterization of the shallow sediments using a multichannel sub-bottom profiler within a reasonable computing cost and with minimal pre-processing. This has the potential to reduce the need of extensive geotechnical coring campaigns

    Perforated tunnel exit regions and micro-pressure waves:geometrical influence

    Get PDF
    ACKNOWLEDGEMENTS The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council, (ii) National Natural Science Foundation of China (Grant No. U1334201 and (iii) UK Engineering and Physical Sciences Research Council (Grant No. EP/G069441/1).Peer reviewedPublisher PD

    Temporal acceleration of a turbulent channel flow

    Get PDF
    We report new laboratory experiments of a flow accelerating from an initially turbulent state following the opening of a valve, together with large eddy simulations of the experiments and extended Stokes first problem solutions for the early stages of the flow. The results show that the transient flow closely resembles an accelerating laminar flow superimposed on the original steady turbulent flow. The primary consequence of the acceleration is the temporal growth of a boundary layer from the wall, gradually leading to a strong instability causing transition. This extends the findings of previous direct numerical simulations of transient flow following a near-step increase in flow rate. In this interpretation, the initial turbulence is not the primary characteristic of the resulting transient flow, but can be regarded as noise, the evolution of which is strongly influenced by the development of the boundary layer. We observe the spontaneous appearance of turbulent spots and discontinuities in the velocity signals in time and space, revealing rich detail of the transition process, including a striking contrast between streamwise and wall-normal fluctuating velocities

    Applicability of frozen-viscosity models of unsteady wall shear stress

    Get PDF
    The validity of assumed frozen-viscosity conditions underpinning an important class of theoretical models of unsteady wall shear stress in transient flows in pipes and channels is assessed using detailed computational fluid dynamics (CFD) simulations. The need for approximate one-dimensional ð1DÞfx; tg models of the wall stress is unavoidable in analyses of transient flows in extensive pipe networks because it would be economically impracticable to use higher order methods of analysis. However, the bases of the various models have never been established rigorously. It is shown herein that a commonly used approach developed by the first authors is flawed in the case of smoothwall flows although it is more plausible for rough-wall flows. The assessment process is undertaken for a particular, but important, unsteady flow case, namely, a uniform acceleration from an initially steady turbulent flow. First, detailed predictions from a validated CFD method are used to derive baseline solutions with which predictions based on approximate models can be compared. Then, alternative solutions are obtained using various prescribed frozen-viscosity distributions. Differences between these solutions and the baseline solutions are used to determine which frozen-viscosity distributions are the most promising starting points for developing 1Dfx; tg models of unsteady components of wall shear stress. It is shown that no frozen-viscosity distribution performs well for large times after the commencement of an acceleration. However, even the simplest approximation (laminar) performs well for short durations—which is when the greatest amplitudes of the unsteady components occu

    Hamming weights and Betti numbers of Stanley-Reisner rings associated to matroids

    Full text link
    To each linear code over a finite field we associate the matroid of its parity check matrix. We show to what extent one can determine the generalized Hamming weights of the code (or defined for a matroid in general) from various sets of Betti numbers of Stanley-Reisner rings of simplicial complexes associated to the matroid

    3D seismic imaging of buried Younger Dryas mass movement flows: Lake Windermere, UK

    No full text
    Windermere is a glacially overdeepened lake located in the southeastern Lake District, UK. Using the threedimensional(3D) Chirp subbottom profiler, we image mass movement deposits related to the Younger Dryas(YD) within a decimetre-resolution 3D seismic volume, documenting their internal structure and interactionwith preexisting deposits in unprecedented detail. Three distinct flow events are identified and mappedthroughout the 3D survey area. Package structures and seismic attributes classify them as: a small (totalvolume of c. 1500 m3) debris flow containing deformed translated blocks; a large (inferred total volume ofc. 500,000 m3), homogeneous fine-grained mass flow deposit; and a debris flow (inferred total volume ofc. 60,000 m3) containing small (c. 8.0×2.0 m) deformed translated blocks. Geomorphological mapping oftheir distribution and interaction with preexisting sediments permit the reconstruction of a depositionalhistory for the stratigraphic units identified in the seismic volume.<br/

    On the Modelling of Asymptotic Wavefronts in Long Ducts with Chambers

    Get PDF
    A novel method of determining the possible shapes of pressure wavefronts in ducts after they have travelled sufficient distances to evolve to asymptotic states is introduced. Although it is possible in principle to achieve the same outcome by simulating complete flow histories from the time of the creation of the wavefronts, this can be impracticable. It is especially unsuitable to use such methods when extremely small grid lengths are needed to represent the final outcome adequately. The new method does not simulate the propagation phase at all. Instead, it explores what final end states are possible, but gives no information about the initiating disturbance or the wavefront evolution towards the assessed asymptotic state. Accordingly, the two methods do not overlap, but instead are complementary to each other. A typical case in which the new capability has high potential is described and used to illustrate the purpose and use of the methodology. However, the primary focus is on the presentation and assessment of the method, not on any particular phenomenon. It is shown that the required computational resources are far smaller than those needed for conventional unsteady flow simulations of propagating wavefronts. The potential numerical limitations of the method are highlighted and, with one exception, are shown to be either of no consequence or easily reduced to acceptable levels. Special attention is paid to the one exception because it cannot be proven to be unimportant and, indeed, it would be unsafe to use it in general analyses of wave propagation. However, strong evidence is presented of its acceptability for the study of asymptotic wavefronts
    corecore