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Pre-stack full waveform inversion of ultra-high-frequency

marine seismic reflection data
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SUMMARY

The full waveform inversion (FWI) of seismic reflection data aims to reconstruct a detailed

physical properties model of the subsurface, fitting both the amplitude and traveltime of the

reflections generated at physical discontinuities in the propagation medium. Unlike reservoir-

scale seismic exploration, where seismic inversion is a widely adopted remote characterisation

tool, ultra high frequency (UHF, 0.2-4.0 kHz) multi-channel marine reflection seismology is

still most often limited to a qualitative interpretation of the reflections’ architecture. Here we

propose an elastic full waveform inversion methodology, custom-tailored for pre-stack UHF

marine data in vertically heterogeneous media to obtain a decimetric-scale distribution of P-

impedance, density and Poisson’s ratio within the shallow sub-seabed sediments. We address

the deterministic multi-parameter inversion in a sequential fashion. The complex trace instan-

taneous phase is first inverted for the P-wave velocity to make-up for the lack of low-frequency

in the data and reduce the non-linearity of the problem. This is followed by a short-offset P-

impedance optimisation and a further step of full offset range Poisson’s ratio inversion. Pro-

vided that the seismogram contains wide reflection angles (> 40 degrees), we show that it is

possible to invert for density and decompose a-posteriori the relative contribution of P-wave

velocity and density to the P-impedance. A broad range of synthetic tests is used to prove

the potential of the methodology and highlights sensitivity issues specific to UHF seismic. An

example application to real data is also presented. In the real case, trace normalisation is ap-

plied to minimise the systematic error deriving from an inaccurate source wavelet estimation.
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The inverted model for the top 15 meters of the sub-seabed agrees with the local lithological

information and core-log data. Thus we can obtain a detailed remote characterisation of the

shallow sediments using a multi-channel sub-bottom profiler within a reasonable computing

cost and with minimal pre-processing. This has the potential to reduce the need of extensive

geotechnical coring campaigns.

Key words: Sub-metric resolution seismic – Ultra High Frequency seismic – Elastic FWI –

Multiparameter inversion – Sediment characterisation.

1 INTRODUCTION

A quantitative physical model of near-surface marine sediments is of crucial importance in a broad

range of environmental and engineering contexts, from the assessment of tsunamigenic landslides

hazard and offshore structure stability, to the identification and monitoring of gas storage sites.

Currently, marine sediment characterisation is heavily reliant on direct sampling of the seabed,

using cores, borehole and/or cone penetrometers (CPTUs) (e.g. Stoker et al., 2009; Vanneste et al.,

2012) . In this framework, marine seismic reflection data is limited to providing information about

the architecture of the stratigraphic discontinuities generating the reflections in the sub-surface,

combined with a predominantly qualitative interpretation of the relative amplitude and polarity

of the seismic phases. The structural information derived from the sub-bottom profiling can be

correlated to core or borehole logs, where possible, to extend the geotechnical/lithological data

from the sampling sites across larger basins. In laterally heterogeneous areas, a large number of

direct samples are required to reconstruct the spatial variation of the model to the degree of accu-

racy required by engineering applications and such an approach is expensive and time-consuming.

The reliability of a quantitative estimation of sediment properties is also likely to be undermined

by the coring process itself, which deforms and mechanically alters the sample, particularly in

low-effective stress environments.

Even though computationally demanding, the inversion of ultra high frequency (0.2-4.0kHz,
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UHF) seismic reflection data potentially provides a non-destructive, faster and cheaper alterna-

tive to characterise the mechanics of the sub-seabed. The quantitative interpretation of pre-stack

seismic data is a well-established and widely accepted procedure in industry and basin-scale ex-

ploration, in the form of either full waveform inversion (FWI) (Tarantola, 1984) or reflection am-

plitude versus offset inversion (AVO) (Ruthenford & Williams, 1989). It allows improved imag-

ing of complex structures (Tarantola, 1984; Mora, 1980; Virieux & Operto, 2009), detailed rock

physics characterisation of oil and gas reservoir (Ostrander, 1984; Ruthenford & Williams, 1989;

Fatti et al., 1994; Mallick & Adhikari, 2015), and enhanced resolution regional geology models

(Gulick et al., 2013; Morgan et al., 2013).

Over the last few years, quantitative interpretation techniques have started to be applied also

to near-surface seismic data in order to remotely derive decimetric resolution shallow sediment

physical properties in terms of reflection coefficient and acoustic quality factor (Bull et al., 1998;

Pinson et al., 2008; Vardy et al., 2012; Cevatoglu et al., 2015). Holland & Dettmer (2013) used

the angle-dependent reflection amplitude as a function of frequency to derive physical properties

layering and gradients within the shallow sediments. Recently, post-stack acoustic inversion has

been successfully applied on ultra-high-frequency seismic data (Vardy, 2015) to derive quantitative

sediment properties from the acoustic impedance.

The dependancy of a pre-stack seismic gather on the elastic properties of the propagation

medium theoretically allows us to obtain a detailed distribution of compressibility, shear proper-

ties and density to the scale of a fraction of the propagated wavelength. Although such properties

can be retrieved through the inversion of the reflections’ AVO, a full waveform approach has the

advantage to account for all the wave phenomena (Tarantola, 1984, 1986; Fichtner, 2011), within

the required resolution and modelling approximation. By exploiting the information contained in

the complete waveform, FWI outperforms AVO inversion in most realistic reservoir geophysics

application (Mallick & Adhikari, 2015), especially when complicated layer interference and ve-

locity gradients are present (Xu et al., 1993; Igel et al., 1996), which is likely to be a factor in UHF

near-surface seismic data.

Here we invert the full waveform of UHF marine data in order to obtain a sub-metric resolution
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elastic model of the near-seabed. Tests on both synthetic and real pre-stack data, demonstrate the

capability of the method to obtain a detailed characterisation of the medium in terms of indepen-

dent estimates of P-wave velocity, density and Poisson’s ratio.

2 METHODOLOGY AND SYNTHETIC EXAMPLES

2.1 Full marine seismogram modelling in the varying streamer depth case

The inversion of pre-stack marine seismic data is often addressed within the acoustic approxima-

tion to obtain a detailed pressure wave velocity model (Fichtner, 2011; Virieux & Operto, 2009;

Tarantola, 1984). Although this approach is widely employed in both industry and academia as

an effective tool to improve the quality of the seismic imaging (Morgan et al., 2013), acoustic

waveform inversion fails to reproduce an accurate model of the subsurface when shear properties

vary in the subsurface, or density is not correlated to P-impedance variations, creating significant

amplitude and phase versus offset effects (Mallick & Adhikari, 2015; Silverton et al., 2015). The

acoustic approximation is usually justified by the unaffordable computational cost of the finite-

differences or finite elements modelling in laterally varying elastic media.

In this paper we account for the elastic properties, assuming that the medium’s heterogeneity

can be realistically approximated as purely vertical in the range of the imaging aperture (Virieux

& Operto, 2009); in UHF seismic, this would be in the order of tens of meters. Despite an inherent

loss of horizontal resolution, such an assumption is acceptable in shallow, recent and weakly tec-

tonised sediments, and allows for the forward model to be computed using an analytic fast solution

in the plane wave domain within a reasonable computational cost (Fuchs & Müller, 1971). The

program chosen to compute the pressure seismograms is the Ocean Acoustics and Seismic Explo-

ration Synthesis from MIT (Schmidt & Jensen, 1985; Schmidt & Tango, 1986.), which addresses

the reflectivity modelling in an efficient and accurate way for the frequency-wavenumber range of

interest.

In UHF marine reflection seismic data, receiver depths in the order of a few meters produce

receiver ghost reflections that correspond to frequency notches inside the bandwidth of the signal.

Significantly sagging streamer geometries are often observed in the marine-lacustrine setting typ-
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ical of UHF seismic (Pinson, 2009) and this sub-metric to metric scale variations of the streamer

geometry as a function of offset cause non-negligible changes in the source-acquisition system

impulse-response. Furthermore, the sea-surface topography approaches the seismic wavelength of

a UHF wavefield, causing the sea-surface reflection coefficient to change significantly across the

streamer length. In this work we chose to include these factors in the computation of the synthetic

seismograms, as opposed to a deconvolution on the observed data. Although inverse ghost filter-

ing would yield a spectral whitening that can be beneficial to the seismic resolution, it is liable to

create artefacts inside the bandwidth of the signal which could severely undermine the inversion

performance. On the other hand, an explicit full wavefield modelling using the one-dimensional

solver would require one forward computation per each receiver offset-depth couple in the appro-

priate wavenumber bandwidth; since the wavenumber ranges necessary to model each offset are

largely overlapping, this approach is clearly inefficient and results in a non-affordable computing

cost. In this work, we developed an efficient total seismogram modelling method, which requires

only the computation of the pure up-going wavefield at one arbitrary receiver depth, and derives

the whole gather in the frequency-wavenumber domain using wavefield decomposition (Verschur

et al., 1992; Aytun, 1999). For each channel, the prediction of the down-going wavefield and the

downward propagation in the plane wave domain are implemented as a linear filter with the es-

timated receiver depth and sea-surface reflection coefficient; an inverse two-dimensional Fourier

transform gives a seismic gather in an expanded offset range from which the trace at the appro-

priate offset is selected. The final predicted seismogram is then obtained by merging the different

offsets. The alternative proposed here allowed for a reduction of the computing time of one order

of magnitude. Details on the theory and the implementation of the method are given in Appendix A.

2.2 Gauss-Newton seismic inversion

FWI is a non-linear and ill-posed parameter estimation technique, which iteratively updates the

earth model m by minimising a weighted measure of the difference between the computed and

recorded seismic data δd(m) (Tarantola, 1984; Virieux & Operto, 2009; Fichtner, 2011). The

objective or misfit functional accounts for the amplitude and phase characteristics of the wavefield,
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either as in the full seismogram, or extracted as pre-stack attributes (Fichtner, 2011; Jimenez-

Tejero et al., 2015) and it is regularised in order to penalise physically non-meaningful solutions

(Menke, 1989; Asnaashari et al., 2012). The least square regularised objective function reads:

e(m) = δdTWd
TWdδd+ δmTWm

TWmδm (1)

where Wd and Wm are respectively the data and model covariance matrix and δm is measured

with respect to a reference model.

At each iteration, the current model mi is updated in the direction of the negative gradient of

the misfit functional, scaled and weighted by the inverse Hessian matrix H:

mi+1 = mi −H(mi)
−1∇e(mi) (2)

The ascent direction ∇e is the scalar product between the wavefield partial derivative matrix (Ja-

cobian or sensitivity matrix J), and the data residual vector δd; H contains the zero-lag auto-

correlation of the sensitivity matrix, plus a second order term depending upon the partial second

derivatives of the wavefield with respect to each model parameter (Virieux & Operto, 2009).

In three-dimensional FWI, the number of independent model parameters makes the compu-

tation of the partial derivative wavefield most often unaffordable. To overcome this limitation,

the model update direction is efficiently computed using the adjoint state method (Lailly, 1983;

Tarantola, 1984; Virieux & Operto, 2009), whereas the inverse Hessian in equation 2 can be re-

placed by a line-search estimate of the optimal step-length, which ensures the convergence towards

the nearest local minimum (Nocedal & Wright, 2006; Virieux & Operto, 2009). However, such a

steepest descent implementation does not account for the scaling and uncoupling effect of the in-

verse Hessian (Virieux & Operto, 2009; Operto et al., 2013) and a robust estimate of the latter in

fact significantly improves parameter resolution and convergence speed (Pratt et al., 1998; Operto

et al., 2013). Quasi-newton methods, such as the lBFGS (Malinkowski et al., 2011; Gholami et al.,

2013; Dagnino et al., 2014), are now a commonplace implementation of Hessian-based FWI, in

which the inverse Hessian is recursively estimated from the evolution of the gradient and model

update over a number of previous iterations (Nocedal & Wright, 2006; Virieux & Operto, 2009).
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Sheen et al. (2006) and Shin et al. (2001), on the other hand, propose to reduce the computational

burden of the partial derivative wavefield by exploiting the source-receiver reciprocity.

In this paper, the waveform inversion is implemented as a damped least square Gauss-Newton

optimisation problem (Menke, 1989; Aster et al., 2005). In the Gauss-Newton method, a locally

linear misfit functional is assumed (Kormendi & Dietrich, 1991; Menke, 1989; Aster et al., 2005),

which allows the second order term of the Hessian to be dropped (Virieux & Operto, 2009). We

obtain explicitly the sensitivity matrix J by perturbing each model parameter at each layer depth;

the resulting partial derivative wavefield is propagated from the secondary virtual sources to the re-

ceivers’ position (Rodi, 1976; Sheen et al., 2006; Operto et al., 2013). The effectiveness of this ap-

proach in scaling and weighting the gradient is higher than the steepest-descent and quasi-Newton

methods, because the approximate Hessian JTJ is computed rather than statistically estimated.

The relatively low number of unknowns of the 1D modelling makes the computing cost afford-

able, with wide scope for improvement thanks to the highly parallelisable nature of the sensitivity

matrix. The Gauss-Newton method can be applied to trace-normalised seismic data (Lee & Kim,

2003), in which the non-physical phase correction resulting as a by-product of the source decon-

volution makes the back-propagation of the adjoint-field inappropriate (Virieux & Operto, 2009).

Also, the presence of strong receiver ghost reflections in UHF data undermines the accuracy of the

reverse time migration of the residuals (Sun et al., 2015). The model update δm at each iteration

can therefore be expressed as:

δm = (JTWdJ+Wm)−1JTWdδd (3)

The first factor of the right hand side of Eq. 3 is the regularised approximate Hessian, while the

second is the gradient of the misfit functional. Eq. 3 has the form of the regularised least square

inverse solution for a problem of the kind:

δd = Jδm (4)

It is therefore possible to express the linear operator J mapping the data residual δd from the data

space into the model update δm space in the Singular Value Decomposed (SVD) domain. If, for
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the sake of simplicity, we set the data covariance matrixes equal to the identity and scale the model

covariance by the factor α, Eq. 3 takes the form (Aster et al., 2005):

δm =
k∑
i=1

si
2

si2 + α2

U(:,i)
T δd

si
pTV(:,i) (5)

where U is the data eigenvector matrix, si is the ith singular value and V is the model eigenvector

matrix. This equation expresses the model update vector as the result of the projection of the data

residual vector on the model update vectorial space. The hyper parameter α contributes in the filter

factor si
2

si2+α2 to damp out the small singular value responsible for numerical instability (Menke,

1989; Aster et al., 2005; Asnaashari et al., 2012). The preconditioning vector p assigns a different

relative weight to each parameter of the sensitivity matrix in order to guide the inversion towards

geologically plausible solutions.

From a physical point of view, Eq. 4 is equivalent to the Born approximation of the wavefield

(Jannane, 1989; Virieux & Operto, 2009; Fichtner, 2011), which implies that the data residuals

are linearly related to missing heterogeneities in a background elastic model (Tarantola, 1984;

Jannane, 1989; Virieux & Operto, 2009; Fichtner, 2011). In this framework, in order for the con-

vergence to local minima to be prevented, the background velocity distribution needs to account

for the traveltime information of the data within half a propagated wavelength, otherwise cycle

skipping (Virieux & Operto, 2009) occurs and a spurious solution is obtained. Resuming, the in-

version process involves the following steps:

(i) Computation of the seismogram for the current model mi;

(ii) Computation of the residual vector δd;

(iii) Computation of the sensitivity matrix by perturbing each model parameter and computing

the residuals in a forward finite difference scheme;

(iv) Singular value decomposition and generalised inverse computation;

(v) Computation of the model update δm and of the model m(i+1);

(vi) Seismogram computation for the m(i+1) model;

(vii) Misfit computation;

(viii) If the convergence criteria are satisfied, the inversion ends, otherwise goes back to (ii).
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The process stops when a maximum number of iteration is reached, the misfit goes below a thresh-

old, or the misfit evolution function has reached a plateau.

2.3 A strategy for the multi-parameter problem

An isotropic and elastic medium is univocally described by a spatial distribution of three inde-

pendent parameters (Aki & Richards, 2002), most commonly density and the Lamè coefficients

(Tarantola, 1986); although equivalent in a forward modelling sense, different parametrisations

have different convergence properties and parameters’ resolution. The most desirable parametri-

sation guarantees the minimum crosstalk among the unknowns of the inversion (Tarantola, 1986;

Kormendi & Dietrich, 1991); ideally, the partial derivative wavefield of one parameter should be

uncorrelated with the residual wavefield produced by each other independent parameter (Tarantola,

1986; Operto et al., 2013). In marine reflection seismic data, the presence of only one propaga-

tion mode impedes the opportunity to obtain independent estimates of P-wave (Vp) and S-wave

velocity (Vs) (Jin et al., 1992; Igel et al., 1996); on the other hand, density is strongly coupled

with P-wave velocity at narrow reflection angle; the two parameters can’t be effectively resolved

and in fact yield a posterior reconstruction of the P-impedance model (Tarantola, 1986; Operto

et al., 2013). Here we choose to parametrise the reflectivity of the earth model as a distribu-

tion of P-impedance, Poisson’s ratio and density (Debski & Tarantola, 1995; Igel et al., 1996),

super-imposed to a long-wavelength P-wave velocity model that controls the wavefield kinematic

(Tarantola, 1986; Jannane, 1989).

The limited offset, limited bandwidth, lack of diving waves and multi-component data of UHF

data produce a highly hierarchical dependancy on the multi-parameter space as a function of the

reflection angle range (Tarantola, 1986). P-impedance is the dominant parameter over the whole

angle range, and it is sufficient to explain the reflected energy at near-zero reflection angle (Taran-

tola, 1986). A second order contribution to the wavefield energy is given by the variation of the

reflection amplitude with angle; this depends upon the Poisson’s ratio and density contrast at the

layer interfaces, the first dominating the mid offset AVO, the latter having an increasing impor-

tance at greater reflection angles (Koefoed, 1955; Ostrander, 1984; Ruthenford & Williams, 1989;
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Mallick & Dutta, 2002). The resulting Hessian matrix for a scatterer layer is highly rank-deficient,

meaning that only one parameter class can be effectively inverted for in a simultaneous multi-

parameter inversion (Operto et al., 2013); despite the inherent stability of the SVD approach, this

makes the multiplication by the inverse Hessian not ideal as a means to uncouple the different

components of the gradient. On the other hand, the angle dependancy of the secondary virtual

sources for the chosen parametrisation, allows us to orthogonalise the problem by appropriately

weighting the residual wavefield and inverting sequentially each independent parameter, from the

strongest to the weakest contributor to the residual energy (Tarantola, 1986; Igel et al., 1996;

Operto et al., 2013). This approach has also the advantage of a simpler implementation of the

regularised least-square inversion, as it does not require to build a model covariance matrix that

balances the contribution of parameters with different weights (Eq. 3).

We first invert for P-wave velocity by keeping Poisson’s ratio and density constant to the

background values, windowing the data and the partial derivative field around the near-offsets;

this is equivalent to a P-impedance inversion, for density is kept constant. We then invert the

whole offset range for Poisson’s ratio; the virtual source radiation patterns of Poisson’s ratio and

density are partially overlapping in the mid reflection angle range, hence the estimate will be to

some extent affected by crosstalk. If wide reflection angles (> 40 degrees) are available in the

data, the relative contributions of density and P-wave velocity to P-impedance are decomposed by

inverting for density at constant P-impedance. A cyclical update of density and Poisson’s ratio in

this stage makes up for the effect of crosstalk resulting from the previous stage. The reliability

of the a-posteriori P-wave velocity estimate is ensured by the broad wavenumber content of the

P-impedance model (Operto et al., 2013), as opposed to a a-posteriori estimation of density from

a [P-impedance, Vp, Poisson’s ratio] parametrisation.

2.4 Test on synthetic UHF marine reflection data

We test the performance of the sequential inversions strategy on a synthetic example of pre-stack

UHF data. In this experiment, the starting P-wave velocity model is accurate enough to allow for

an effective inversion of the reflectivity of the medium. We also assume that the source wavelet is



Pre-stack FWI of UHF marine seismic data 11

perfectly known. The synthetic true model has 18 layers, for a total thickness of 12 meters below

the sea-bottom interface at 15 meters water depth; it includes 20 cm thick target horizons with

distinct elastic characteristics. Changes in acoustic impedance are either correlated to variation in

both density and velocity, or density only, and the Poisson’s ratio varies independently with respect

to the P-wave velocity, in order to mimic both changes in fluid saturation in the same lithology and

lithological stratifications (Ruthenford & Williams, 1989). The perfect elasticity implies that there

is no intrinsic attenuation (Aki & Richards, 2002). The theoretical source signature is a minimum

phase Boomer wavelet (Fig. 1) band-pass filtered 0.1-1.5 kHz (almost 4 octaves). The acquisition

simulates a source depth in the order of 10 centimetres and a 60 channel streamer with a group

spacing of 1 meter and a minimum offset equal to 13 meters. The receiver depth is equal to 1.85

meters, which corresponds to receiver ghost notches at multiples of 400 Hz (Aytun, 1999). The

true data have been contaminated by a band-limited zero-mean gaussian noise, for a signal-to-

noise ratio equal to 50 with respect to the amplitude of the strongest reflection.

The starting model of the iterative inversion is a low-pass filtered (2 meters cut-off wavelength)

version of the true model, containing the correct velocity and density trend, but accounting only for

the sea-floor primary reflection traveltime and surface-related multiples. With the exception of the

sea-floor, the location of the discontinuities is unknown. The starting model has been parametrised

as a stack of 58 homogeneous, elastic and isotropic layers with a thickness chosen to be in the

order of the tuning thickness for the frequency band employed and the expected velocity values

(λ/4). This results in a model space with 174 degrees of freedom, which are broken down to 58

per stage in the sequential inversion.

In Stage 1 ( Fig. 2) the data are inverted for P-wave velocity only. An accurate P-impedance

profile is retrieved and a good waveform match is attained in the short offsets of the seismic

gather. Note how the 20 cm thick low-density bed at 3.4 meters is incorrectly identified by a

drop in P-wave velocity, while in layers where P-wave velocity and density are correlated, the

P-wave velocity change is overestimated to explain the P-impedance variation. This confirms the

considerations about the [Vp, density, Poisson’s ratio] parametrisation in the reflection regime
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(Tarantola, 1986; Operto et al., 2013). The Poisson’s ratio is kept constant in this stage, so that not

only P-wave, but also S-wave velocity is effectively updated.

At Stage 2 the data are inverted for Poisson’s ratio, while the other parameters are kept fixed.

The misfit is here dominated by the reflection amplitude versus offset variation. The inversion

updates the model in the correct direction, but crosstalk with density prevents from reconstructing

the fine-scale details of the shear properties, especially where the relative contribution of P-wave

velocity and density to the P-impedance is poorly described ( Fig. 3).

Stage 3 of the inversion firstly optimises density until an accurate impedance distribution is

obtained. At this point, the final parametrisation [P-impedance, density, Poisson’s ratio] is effec-

tively adopted and density evolves independently from P-impedance; this produces a consequent

change in P-wave velocity. Note how the P-impedance contrast at 3.4 meters is now correctly de-

composed in its relative P-wave velocity and density contributions. The effect crosstalk between

Poisson’s ratio and density in the previous stage is also made up for by cyclically updating the two

parameters: the effectiveness of this stage is particularly evident in layers where the underestimate

of density in the starting model had induced an underestimate of Poisson’s ratio (and vice-versa).

The final model (Fig. 4) is a high-fidelity representation of the elastic model.

The robustness of the proposed inversion strategy can be tested against variations of the signal-

to-noise ratio (SNR). Gaussian band-limited noise with zero mean has been added in the signal

frequency band to the field data with different SNRs and the normalised L2 model misfit has been

computed per each parameter class. As shown in Fig. 5, P-impedance is the most robust param-

eter to increasing random noise energy in the data; Poisson’s ratio is also remarkably robust in

a broad range of SNR, while the results of the P-wave velocity/density decomposition at con-

stant impedance quickly deteriorates with decreasing signal-to-noise ratio. Note how, for signal-

to-noise ratio lower than 50, the Poisson’s ratio data misfit increases steeply, arguably because of

the crosstalk between density and shear properties. The results are consistent with the idea that

shear properties and density are second order contributions to the misfit value in marine reflec-

tion seismograms (Tarantola, 1984, 1986), hence their effect is more quickly buried in high noise

levels. Nevertheless, as we will see in the next section, general conclusions about the robustness
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of the parameter estimation need to account for the medium characteristics and the acquisition

parameters.

3 SENSITIVITY ISSUES SPECIFIC TO UHF DATA

The elastic full waveform inversion of UHF reflection data suffers from specific factors, which are

discussed in detail in this section:

(i) The limited reflection angle due to the short streamers normally employed limits the possi-

bility to obtain independent information about P-wave velocity and density.

(ii) The inversion for the Poisson’s ratio distribution is highly non-unique, because the AVO

characteristics of the gather are dependent upon the Poisson’s ratio contrasts (Aki & Richards,

2002), rather than its absolute value, so that the misfit function is insensitive to shear properties

gradients. Furthermore, the high Vp/Vs ratio of the shallow marine sediments (in the order of

101 − 102) spans a very narrow Poisson’s ratio range (Hamilton, 1970).

(iii) The sensitivity in the mid to long wavelengths of the P-wave velocity model is poor because

of the lack of low-frequencies and the limited available offsets (Mora, 1980; Jannane, 1989).

(iv) The accuracy of the UHF source wavelet estimation using traditional methodologies is

compromised by the characteristics of the data and of the typical reflectivity series involved.

3.1 Sensitivity to constant-impedance density variations

A broad literature about the parameter dependancy of marine seismic reflection data shows that

independent high frequency variations of P-wave velocity and density at constant impedance are

poorly constrained parameters when limited offset are available (e.g. Debski & Tarantola, 1995;

Jannane, 1989; Igel et al., 1996). We conduct a sensitivity analysis on a simple homogeneous

model with a low impedance 50 cm thick layer, whose density is changed at constant impedance,

as a function of the maximum reflection angle at the target. The relative L2 data misfit is computed

against a reference model and the results are plotted in decibel scale in Fig. 6a. The rapid decrease

in the relative data misfit with decreasing reflection angle suggests that the sensitivity of the inver-

sion to such changes in the subsurface is highly sensitive to the ratio between streamer aperture
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and target depth. In order to decompose the amplitude and traveltime contribution to the mea-

sured misfit, we compute the offset-dependent cross-correlation value and lag; the results show

how a density perturbation at constant impedance produces a change in the maximum value of

the cross-correlation function (Fig. 6b), whilst the lag is not significantly affected, being always

equal to or lower than one sample. This results confirm that, although the reflection travel times

are insensitive to such perturbations, being mostly controlled by a long-wavelength distribution

of the P-wave velocity, density variations at constant impedance do affect the angle-dependent

reflectivity of the propagation medium, as a second order contribution to the AVO reflection am-

plitude (Aki & Richards, 2002). Three density profiles have been picked from the population of

models used for the sensitivity analysis to test how this translates into the inversion results. We

use a constant starting density model, where the impedance change at the target layer is entirely

explained by a P-wave velocity variation, a situation comparable to the end of the second stage of

the inversion. The Poisson’s ratio profile of the starting model is correct, thereby crosstalk effects

do not play a role in the test. The curves computed from the exact AVO equation (Aki & Richards,

2002) for the starting and true models show how the inaccuracy in the density profile at constant

impedance contrast produces a residual AVO at long offset, which is greater for the shallower

model. The quality of the P-wave velocity/density decomposition in the final models is highly

dependent on the reflection angle range (Fig. 7) and no independent information about P-wave

velocity and density can be reliably obtained at reflection angles below 30 degrees. Model misfit

for each parameter class in the 18 layers model (Fig. 8) as a function of a maximum reflection

angle shows that P-impedance and Poisson’s ratio are robust to changes in the reflection angle; in

contrast, the P-wave velocity profile quickly deteriorates as the reflection angle range narrows.

3.2 Sensitivity to Poisson’s ratio in high Vp/Vs media

Changes in lithology, pore pressure and saturating fluids produce differential variations of com-

pressibility and shear properties, determining changes on the ratio between P-wave and S-wave

velocities (Vp/Vs) (Ruthenford & Williams, 1989; Mallick & Dutta, 2002; Igel et al., 1996). How-
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ever, the Vp/Vs ratio controls the reflectivity of a medium via the Poisson’s ratio (Koefoed, 1955;

Mavko et al., 2009):

ν =
(Vp/V s)

2 − 2

2[(Vp/V s)
2 − 1]

(6)

The non linear relationship of Eq. 6 determines a range-dependent sensitivity to Vp/Vs changes.

For low ν, small changes in the Vp/Vs ratio head to significant variation of ν, thereby creating

important AVO effects; in contrast in the range from 0.45 to 0.5, where normally most shallow

marine sediments fall (Hamilton, 1970), large changes in Vp/Vs correspond to small variation of

Poisson’s ratio (Fig. 9a), limiting the AVO response (Mallick & Dutta, 2002).

A sensitivity analysis is performed on a simple elastic model with a low-impedance 50 cm thick

target layer, whose Vp/Vs ratio is 5 times higher than the surrounding homogeneous medium, sim-

ulating the presence of a under-consolidated, high-porosity and high pore-pressure sediment bed.

Within a broad range of ν, we introduce perturbations to the S-wave velocity of the target layer and

measure the relative L2 misfit with respect to a reference model. The sensitivity to Vs perturbations

rapidly falls with increasing Poisson’s ratio, regardless the amount of perturbation added (Fig. 9b).

To study how this loss of sensitivity affects the inversion performances, we pick four models from

the sensitivity analysis in four different Poisson’s ratio ranges and run the inversion starting from a

homogeneous profile. Although the Vp/Vs ratio contrast at the target layer boundary is 5 for every

model, the corresponding Poisson’s ratio variation drops quickly below 5% for Vp/Vs ratio higher

than 4 (Table 1). This is apparent in the residual Amplitude Versus Angle (AVA) computed between

the starting homogeneous Poisson’s ratio model and the true model containing the target interface

(Fig. 10). As a consequence, in the presence of noise the match between retrieved and true S-wave

velocity profile deteriorates when the Poisson’s ratio background value increases (Fig. 11). The

Vp/Vs increase at the target interface is accommodated for by a Vs profile with a similar contrast,

but an erroneous relatively long-wavelength trend.

To address this non-uniqueness issue, we propose a structure-constrained gradient precondi-

tioning: in the framework of a sequential strategy, the normalised derivative of the P-impedance

obtained from the first stage of the inversion is used to weigh each element of the misfit gradient

in the Poisson’s ratio stage. Thus the inversion updates preferentially the Poisson’s ratio of layers
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ν 1 ν 2 Vp/Vs 1 Vp/Vs 2

a 0.33 0.4949 2 10

b 0.4666 0.4987 4 20

c 0.4920 0.4996 8 40

d 0.4984 0.4999 18 90

Table 1. Table of Poisson’s ratio and Vp/Vs ratio of the models used for the sensitivity analysis. Index 1

refers to the surrounding medium, index 2 to the target layer.

with a significant change in the acoustic properties, imposing a correlation between changes in

P-impedance and Vp/Vs ratio. The final model misfit is significantly improved by preconditioning

(Fig. 12), especially for the low-sensitivity, high Poisson’s ratio cases. Ambiguities in the inter-

pretation of the interface location are reduced without the need of additional a-priori information.

This approach remains essentially data-driven and fits naturally in the sequential inversion strategy.

3.3 Complex trace inversion to improve the model kinematics

The lack of low frequencies and the limited offsets in UHF data determine a low sensitivity to

the mid-to-low wavelengths of the earth-model (Mora, 1980; Jannane, 1989). Although the back-

ground P-wave velocity distribution within the top 50 meters of the sub-seabed is close to the

water velocity (Hamilton, 1970), this characteristic can be conducive to cycle-skipping and local

minimum entrapment in the P-wave velocity inversion (Tarantola, 1984; Virieux & Operto, 2009),

which would jeopardise the reconstruction of the elastic model in the following steps. To reduce

this problem, when the knowledge of the starting model is poor, we exploit the properties of the

complex trace, combined with a multi-scale approach, which progressively includes higher fre-

quency in the inversion (Bunks et al., 1995). The seismic signal s(t) can be considered as the real

part of a complex c(t) trace whose imaginary part is its Hilbert transform h(t)(Taner et al., 1979),

i.e. its π/2 phase-shifted version:

c(t) = d(t) + ih(t) (7)
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The instantaneous phase (IP) is defined as the inverse tangent of the ratio between the imaginary

and the real part, while the modulus of the complex trace is known as the envelope or reflection

strength. Here we use a modified version of the instantaneous phase, proposed by Jimenez-Tejero

et al. (2015), where the inverse tangent computed on the ratio between the absolute value of the

imaginary trace and the real trace. It reads:

φ(t) = tan−1(
|h(t)|
d(t)

) (8)

Separating instantaneous amplitude and phase information of the seismogram is beneficial to the

convergence properties of FWI (Fichtner, 2011; Bozdag et al., 2011; Fichtner et al., 2008). The

modified instantaneous phase is less liable to cycle skipping when FWI is applied to limited-

offset, band-limited seismic reflection data (Jimenez-Tejero et al., 2015), which is commonly the

case in near-surface marine reflection seismic; furthermore, the phase-only virtual source for P-

wave velocity is naturally uncoupled in the reflection regime with Poisson’s ratio and density over

the whole offset range, for it is less AVO-dependent. For elastic seismic inversion, the complex

trace attributes are easily incorporated into a multi-stage approach, where the instantaneous phase

is inverted first for the P-wave velocity distribution until convergence is reached and the reflected

phases are correctly aligned; after that, the elastic model parameters are inverted for using a misfit

functional based on the instantaneous amplitude. The same considerations about the sensitivity

to the elastic model space hold in the envelope-based misfit functional, as the trace envelope is

sufficient to describe the AVO characteristics of the gather.

3.4 The source-independent approach

Inaccuracies in the estimation of the source wavelet are among the main causes of systematic

error in the FWI of real data. Statistical source estimation based on the seismic convolution theory

assumes a white reflectivity series (Dey & Lines, 1998; Mallick & Adhikari, 2015); although this

is the most popular approach in seismic modelling and imaging, such an assumption is likely to

be violated in UHF near-surface data, because the short reflectivity series involved do not allow

for a statistically robust estimate of a white signal and graded boundaries become increasingly

important at the sub-metric scale. More complex methods, such as homomorphic deconvolution in
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the cepstral domain (Ulrych, 1971), are compromised by strong ghost contamination. Therefore we

use the source normalisation scheme proposed by Lee & Kim (2003). According to the convolution

theory, a seismic trace can be expressed in the frequency domain by multiplying the complex

spectra of the source and the impulse response of the propagation medium, or Green’s function

(Aki & Richards, 2002).

d(ω) = s(ω)g(ω) (9)

Let dR(ω) be a reference trace chosen from the multi-channel seismic gather, where g(ω) in Eq. 9

is replaced by gR(ω) . Normalising the seismogram for the reference trace in the frequency domain

effectively deconvolves the data from the source signature:

dN(ω) =
s(ω)g(ω)

s(ω)gR(ω)
=

g(ω)

gR(ω)
(10)

where gR(ω) is the impulse response at the reference receiver. In Eq. 10, dN is independent from

the source signature and essentially reduced to the Green’s function normalised to the impulse

response at the reference receiver location, normally chosen to be the closest to the source (Lee

& Kim, 2003; Joo et al., 2012; Kwon et al., 2015). In the so-obtained normalised data space,

the inversion, rather than being driven by the recorded wavefield, seeks for the match between the

relative changes in the impulse response of the medium with respect to the reference trace position.

No changes in the virtual sources radiation patterns are observed, hence the parameter depen-

dancy of the normalised data from the elastic model space is not modified. The spectral normali-

sation, however, is liable to instabilities if the reference trace spectrum contains near-zero values

at certain frequencies. In order to overcome this issue, the back transformation to the time domain

is computed assigning a specific weight to each frequency component to damp out the spikes in

the spectra corresponding to poles in the inverse filter. Although this approach would be easily in-

corporated in a frequency domain inversion, back transformation to the time domain is necessary

to allow for the inversion to be performed on the time-dependant complex trace attributes.
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4 APPLICATION TO A REAL UHF DATASET

4.1 Setting and Data overview

In order to test the performance of the proposed inversion scheme, we apply the methodology to

a real UHF multi-channel shallow water seismic gather acquired in the Solent, UK. The seismic

source is an electro-acoustic Boomer plate, capable of producing a high-frequency, wide-band and

highly repeatable minimum phase pulse (Verbeek & McGee, 1995) (Fig. 1); the receiver streamer

has 60 channels with minimum offset equal to 10 meters, one-meter group spacing and 7 elements

per group. Both source and receiver directivity filters have been applied to the synthetics in the FK

domain prior to the misfit computation (Verbeek & McGee, 1995; Riedel & Theilen, 2001). The

inversion is performed on the reference-trace deconvolved seismograms, which is expected to be

robust against inaccuracies in the wavelet estimate. Since the sea surface multiple reflections are

not included in the forward modelling, the data are bottom muted above the first order sea floor

multiple; the only other pre-processing applied to the data is the muting of the direct wave and a

frequency filtering in the appropriate modelling band.

Previous geophysical data available in the area comprise acoustic quality factor Qp (Pinson

et al., 2008), and long-wavelength P-wave velocity field from Migration Velocity Analysis (MVA)

(Pinson, 2009), along with lithology, porosity and density log-measurements of a proximal sed-

iment core. Seismic to log calibration identifies a 1-to-3 meters thick gravel layer, with low Qp

(c. 50), high P-wave velocity and density; it overlays, separated by an erosive unconformity, an

over-consolidated clay-dominated layered sediment sequence, with high Qp (c. 150) and acoustic

velocity. The sediment sequence below the unconformity is interbedded by sub-metric shelly and

limestone layers, and thus likely has detectable variations of shear properties. At the bottom of this

15 meters thick sequence, there is a strong impedance contrast interface.

The combination of shallow water environment (16 meters water depth) and streamer aperture,

makes the reflection angle range wide enough to obtain independent estimates of density and P-

wave velocity (64 to 47 degrees from the shallowest to the deepest interface), while the relatively
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low Vp/Vs ratio of the over-consolidated clayey sequence is favourable to the shear properties

inversion.

The medium is parametrised as a stack of 78, 20 cm-thick homogeneous layers, from the

seabed at 16 meters below the free surface, down to 15 meters below the seafloor. The MVA

velocity profile is used as the starting Vp model. The initial Poisson’s ratio model consists of a

gradient for the top gravel sequence from 0.5 at the seafloor to 0.45 at the top of the layered se-

quence, whose value remains constant down to the bottom of the model. The latter is an unusually

low value for shallow marine sediments, but is required due to the over-consolidation; tests run

with higher average Poisson’s ratio resulted in higher data misfit. Although we invert here for

the elastic parameters, the forward model includes a long-wavelength Qp model determined using

the spectral ratio method from near-offset Boomer and Chirp over the sediment sequence (Pinson

et al., 2008); the Qs model is derived from Qp using, in the absence of other information, a high-Q

empirical relationship between compressional and shear attenuation, i.e. Qs = 4/9Qp (Aki &

Richards, 2002).

4.2 FWI and comparison with the ground-truth

In the FWI for the elastic parameters, the strategy described in the methodology section is applied,

with a misfit functional based on the complex trace attributes: the modified instantaneous phase

is used to obtain a P-wave velocity model robust to cycle-skipping; the elastic model parameters

controlling the AVO are then inverted sequentially using the instantaneous trace amplitude. The

first stage of the inversion updates the MVA velocity model by fitting the instantaneous phase of

the seismogram, starting from a cut-off frequency of 0.5 kHz and progressively broadening the

bandwidth up to 1.5 kHz. After convergence is attained in the instantaneous phase domain, the

envelope of the seismograms are inverted for P-wave velocity; a near-offset taper is applied to the

data to attribute higher weight to the near-vertical reflection amplitude and reduce the crosstalk

with Poisson’s ratio. In Fig. 13, note how the reflection strength inversion updates the velocity

model in the absolute values, while the location of peaks and troughs in the velocity structure

has already been constrained by the instantaneous phase (IP) inversion. Poisson’s ratio inversion
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reduces the misfit between the computed and the field data, with an importance increasing with

increasing offset (Fig. 14). No gradient preconditioning is applied in this stage, as the highly het-

erogeneous impedance in the shallowest two meters would produce a strong bias in the solution,

preventing the model from evolving in the deeper portions; nevertheless, the relatively low Pois-

son’s ratio in the site allows for obtaining a stable result. In the final stage, the inversion for density

yields minor improvements in the impedance profile; when convergence is reached, density is in-

verted for independently from P-impedance, alternating steps of Poisson’s ratio optimisation (Fig.

15).

A synoptic view of the elastic model and the ground-truth is shown in Fig. 16. The seismic

inversion site is five hundred meters away from the ground-truth, since the irregular sea bottom at

the core site invalidated the 1d assumption. However, the lateral continuity of the reflections in the

pre-stack-migrated seismic section (Fig. 16) suggests that, other than changes in depths and layer

thicknesses, the sediment properties are equivalent. The reflectors of the PSDM seismic section

are used to correlate the inversion results to the core measurements, which have been filtered down

to the seismic resolution after the removal of outliers and non-significant values. The axis scale

of the porosity is reversed, to highlight the positive correlation between the reduction of porosity

and the P-impedance (Vardy, 2015); we also expect to find a positive correlation between the clay

content and the Poisson’s ratio (Hamilton, 1970). The sedimentary log ranges from clay to gravel

for loose sediments, whereas the presence of lithified material is marked by values going past the

gravel base-line. We divide the section into units, colour coded and labeled in Fig. 16.

Unit a. The top 3 meters of the model are characterised by a high-impedance top portion over-

laid by a low-impedance, low-density and lower Poisson’s ratio deeper part; although no ground-

truth density and porosity are available at this depth, the results are consistent with the gravel layer,

with internal heterogeneity confirmed by the presence of reflections in the PSDM section. Note

in figure 13 how the inner structure of the gravel layer recognised by the inversion was instead

averaged in a uniform high-velocity layer in the MVA model. A strong reduction of the Poisson’s

ratio is observed from the top to the bottom of the unit, as expected inside the shallowest seabed

sediment as a consequence of increasing consolidation with depth.
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Unit b. Here higher impedance and higher Poisson’s ratio than the bottom of unit a are obtained;

the top and bottom boundaries correlate to two strong reflections in the PSDM section, while the

core data identifies a clay bed with a density and porosity structure which mimics the inverted

impedance and density profile; note how the strong impedance contrast at the bottom of the unit

has no clear correspondence in the density data at the core location, consistently with a weaker

and locally less continuous reflection in the PSDM seismic. The increase of Poisson’s ratio is in

agreement with a more cohesive medium, which is less conducive to shear wave propagation.

Unit c. The impedance and density trends match the porosity and ground-truth density, con-

sistent with changes from fine-grained sediments to silt-dominated beds. Poisson’s ratio in this

unit is anti-correlated to the impedance profile; this can be explained by an increased stiffness in

the micro-fabric of the sediments, which determines an increase of compressional wave velocity

correlated to a decrease of the Vp/Vs ratio. At the bottom of the unit, the decrease of impedance

and increase of Poisson’s ratio correlates to a increased clay content in the lithological log.

Unit d. The Impedance and density profiles have a positive gradient, which correlates to the

transition to a coarser-grained portion of the lithological log, reaching a maximum in a composite

sandy layer interbedded by a thin clay-rich bed; the latter has a distinct low density and high

Poisson’s ratio signature in the inverted model. The excellent agreement between the ground truth

and the model in this layer is encouraging.

Unit e. Impedance and density decrease in a one-meter thick bed interbedded by a higher

impedance and density thinner layer. This correlates with a clay bed interbedded by a thin coarser-

grained interval. Poisson’s ratio shows a decrease in this unit, with a negative peak corresponding

to the coarse-grained layer depth and an increase in the clay content towards the base. Density and

porosity from the log are consistent with the inversion results.

Unit f. High impedance and density unit, interbedded by a 20 cm thick bed with low impedance

and density. The ground-truth shows a similar pattern and correlates the low-impedance layer with

a shelly sediment bed within the clay-dominated sediment. Poisson’s ratio has a negative trend at

the top, reaches a negative peak at the low-impedance sand layer location, and sharply increases
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in the bottom clay-rich portion. In this unit, changes between cohesive and granular medium have

a clear signature on the Poisson’s ratio variations.

Unit g. This unit shows an alternation of lows and highs in impedance and density. The sharp

increase of impedance at the bottom corresponds to a strong continuous reflection in the PSDM

seismic; this correlates to a fining-upward, from gravel to clay, sediment interval. The internal

lithological layering seems to have a signature in the 20 cm thick sharp decrease of Poisson’s

ratio at a depth compatible with the gravely-sandy part. Note how, at this depth, the quality of the

inverted density profile has deteriorated as a consequence of the narrower reflection angle range.

Unit h. The top part of this unit shows a decrease of impedance and density, which correlates

to the density and porosity profiles, followed by an increase which can be related to the top of a

rocky unit.

4.3 Comments

The real data example corroborated most of the conclusions drawn from the synthetic sensitiv-

ity tests. The combination of streamer aperture and water depth ensured that the reflection angle

range was wide enough to obtain an independent characterisation of the subsurface in terms of

P-wave velocity, density and Poisson’s ratio, without assuming any a-priori relationship between

the parameters. Despite the simple starting model used and the deterministic approach, a sensible

solution has been obtained. The convergence properties of the modified instantaneous phase have

been exploited to reduce the risk of cycle-skipping, whereas possible inaccuracies in the source

wavelet have been mitigated by using the reference-trace normalisation. The offset-dependent mis-

fit evolution throughout the inversion confirmed that the sequential optimisation is a reasonable and

effective way to tackle the hierarchical dependancy of the data on the elastic parameters. The pres-

ence of strong internal heterogeneity inside the top gravel layer undermined the effectiveness of

the Poisson’s ratio gradient preconditioning scheme; however, the relatively low Poisson’s ratio in

the site and the wide reflection angle, allowed for the shear properties inversion to produce stable

results using a raw gradient calculation.
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The Qp macro-model estimated using the spectral ratio method (Pinson et al., 2008) and the

derived Qs were included in the forward model, in particular to account for the strong intrinsic

attenuation within the top low-Qp gravel layer. Although a high-fidelity attenuation model would

further improve the characterisation of the sediment column, a reliable and precise wavelength-

scale Qp-model is difficult to achieve: in the high Qp limit there is little attenuation per wavelength,

and in the low Qp limit the energy is unable to propagate. In particular, within the FWI framework,

there is low sensitivity to attenuation and strong crosstalk with the elastic model parameters (e.g.

Malinkowski et al., 2011; Kamei & Pratt, 2013); furthermore, constraining Qs from marine seismic

data would require isolating converted S-waves. In this case study, the sensitivity to Q is further

limited by the large-scale high quality factor of the fine-grained, cohesive sediments that form the

dipping beds (Pinson et al., 2008; Malinkowski et al., 2011), which limits the change in waveform

due to attenuation. However, the large-scale, high precision, Qp model of Pinson et al. (2008)

accounts for the intrinsic attenuation of energy, enhancing the stability of the inversion and the

reliability of the solution.

CONCLUSIONS

This work demonstrates that it is possible to use a multi-channel UHF sub-bottom profiler to derive

a high-fidelity distribution of the elastic properties of the sub-seabed with a sub-metric resolution,

using a relatively simple algorithm, with a simple pre-processing of the raw data and without

detailed a-priori information. A dedicated modelling and inversion strategy has been developed

to account for the specific acquisition conditions and frequency content of shallow marine data

within a reasonable computing time on a standard workstation. A broad range of synthetic tests

along with a real data case study have been used to explore the capabilities of the inversion method

and to define the conditions under which a full elastic characterisation can be obtained.

We have shown that:

• A sequential inversion strategy is an efficient way to tackle the multi-parameter dependancy

of the data, and can be used to derive P-wave velocity, bulk density, and Poisson’s ratio profiles.
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• The relative contribution of density and P-wave velocity to P-impedance can be decomposed,

provided that reflection angles > 40 degrees are available.

• P-impedance is the most robust parameter to noise and can be effectively obtained from

narrow reflection angle data even if P-wave velocity and density cannot be separated, as long

as a reliable low-wavenumber velocity model is available.

• The Poisson’s ratio inversion does not require wide reflection angle data, but it suffers from

an important loss of sensitivity in very high Vp/Vs ratio media, which can be partially made up

for using a structure-oriented gradient preconditioning.

The elastic model obtained shows a good agreement with the ground-truth density and poros-

ity, and a correlation is shown between clay content and Poisson’s ratio distribution. Estimates

of physical properties, such as undrained shear strength, effective stress, overpressure ratio and

porosity, can be derived from the inverted elastic model (Hamilton, 1970; Richardson & Briggs,

1993; Mavko et al., 2009; Vardy, 2015). This opens the way to the extensive use of quantitative

seismic interpretation as a means to obtain a detailed characterisation of the shallow sediment

properties, as an efficient alternative to costly and time-consuming coring campaign.
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(a)

(b)

Figure 1. Boomer source wavelet. a) Time domain source signature. b) Power spectrum in deciBel
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(a)

(b)

Figure 2. Stage1, P-wave velocity inversion. a) Starting model (black), true model (blue), current best

model (red). b) Synthetic seismogram (red) overlaid to the ”real data” (blue). The solid grey curve represents

the trace by trace percentage L2 misfit for the final model, the dashed curve is relative to the model at the

beginning of the stage. The Impedance profile is retrieved accurately and a good match is attained in the

short offsets of the seismic gather.
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(a)

(b)

Figure 3. Stage2, Poisson’s ratio inversion. a) Starting model (black), true model (blue), current best

model (red). b) Synthetic seismogram (red) overlaid to the ”real data” (blue). The solid grey curve represents

the trace by trace percentage L2 misfit for the final model, the dashed curve is relative to the model at the

beginning of the stage. In this stage we reduce the data misfit associated to the AVO characteristics of the

gather, but the inaccuracies in the starting density model prevent the algorithm from retrieving the shear-

properties’ fine-scale details.
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(a)

(b)

Figure 4. Stage3, Cyclical Density and Poisson’s ratio inversion. P-impedance constant. a) Starting

model (black), true model (blue), current best model (red). b) Synthetic seismogram (red) overlaid to the

”real data” (blue). The solid grey curve represents the trace by trace percentage L2 misfit for the final model,

the dashed curve is relative to the model at the beginning of the stage. In this stage we fit the wide-angle part

of the shot gather by optimising cyclically for Density and Poisson’s ratio. Note how the impedance change

right below 3 meters depth is correctly attributed to a density change and the P-wave velocity is changed

accordingly to keep the P-impedance constant.
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Figure 5. Robustness to random noise. Model misfit percentage variation for P-impedance, Poisson’s ratio,

P-wave velocity and density as a function of signal-to-noise ratio (SNR). Note how the acoustic impedance

is the most robust parameter, while the Vp/density separation is the most sensitive to the noise energy in a

broad SNR range. Interpolated from the computed value (asterisks).
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(a)

(b)

Figure 6. Constant-impedance density sensitivity analysis. Per each reflection angle, the L2 data misfit

normalised to the seismogram energy is computed between a reference model and a range of models with

increasing percentage perturbation of the target layer density. a) Data misfit normalised to the total data

energy in deciBel. The contour plot shows the percentage iso-misfit surface. The black dots correspond

to the computed models. b) Maximum cross-correlation value as a function of offset at different maximum

reflection angles. The offset-dependent correlation is computed per different perturbation values (increasing

from pale blue to magenta).
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(a)

(b)

Figure 7. Constant-impedance density sensitivity analysis. a) Differential reflection AVO computed be-

tween a constant density model, and a model where both density and Vp contribution are present, within

a reflection angle range corresponding to changes in sea-floor depth from 15 to 50 meters. The solid lines

are relative to the models considered for the inversion. The legend contains the reflection angle at the target

layer. b) Retrieved density profile (red), against true density profile (blue). The starting density model is

homogeneous (black), although it corresponds to a correct P-impedance profile.
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Figure 8. Robustness to changes in the reflection angle range. Model misfit percentage variation as

a function of the maximum reflection angle for the complex 18 layers model per each parameter class.

Interpolated from the computed value (asterisks).
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(a)

(b)

Figure 9. Poisson’s ratio sensitivity. a) Poisson’s ratio vs Vp/Vs ratio. Most unconsolidated sediments fall

into the red box, where great changes in Vp/Vs correspond to a narrow Poisson’s ratio range and thereby

to a small AVO effect, which translates into a poorer sensitivity. b) Over a broad Vp/Vs ratio range of the

encasing medium, the L2 data misfit is computed between a reference model and a range of models with

increasing percentage perturbation of the target layer S-wave velocity. Data misfit normalised to the total

data energy in deciBel. The contour plot shows the percentage iso-misfit surface. The black dots correspond

to the computed models.



Pre-stack FWI of UHF marine seismic data 35

Figure 10. Poisson’s ratio sensitivity. Difference between the AVA of the starting and true Poisson’s ratio

profiles in the four Vp/Vs ranges considered in the sensitivity analysis (solid lines). Intermediate differential

AVA curves are shown with the dotted lines. The quick fall in differential AVA from the first solid line

(Vp/Vs=2) to the first dotted line (Vp/Vs=3) is consistent with the quick loss in sensitivity shown in figure

9b

.
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(a)

(b)

Figure 11. Poisson’s ratio inversion as a proxy to Vs. Sensitivity analysis. Poisson’s ratio inversion for

the models from a to d, with and without noise. a) Retrieved S-wave velocity profile in the noise-free (red)

and noise-contaminated data (black), against the true Vs profile (blue). b) Final Vp/Vs ratio misfit for models

from a to d in the noise-free and noise-contaminated cases. Interpolated from measured data (asterisks).
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(a)

(b)

Figure 12. Poisson’s ratio inversion as a proxy to Vs. Sensitivity analysis. Poisson’s ratio inversion of

models from a to d with structure-constrained gradient preconditioning. Noise-contaminated data. a) Re-

trieved S-wave velocity profile with (red) and without (black) gradient preconditioning, against the true Vs

profile (blue). b) Final Vp/Vs ratio misfit for models from a to d with and without gradient preconditioning.

Interpolated from measured data (asterisks).
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Figure 13. Stage1. P-wave velocity inversion. Instantaneous phase multi-scale P-wave velocity inversion,

followed by a P-wave velocity instantaneous amplitude inversion with short offset windowing. In panel a,

the starting model (black) and the final model at this stage (red). The dashed red line is the Vp model after

the instantaneous phase inversion only. In panel b, the envelope of the synthetic seismogram (red) overlaid

to the real (blue) and percentage misfit as a function of offset, at the start and at the end of the stage (dashed

and solid grey lines).



Pre-stack FWI of UHF marine seismic data 39

Figure 14. Stage2. Instantaneous amplitude Poisson’s ratio inversion. In panel a, the starting model

(black) and the final model at this stage (red). In panel b, the envelope of the synthetic seismogram (red)

overlaid to the real (blue) and percentage misfit as a function of offset, at the start and at the end of the stage

(dashed and solid grey lines).
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Figure 15. Stage 3. Instantaneous amplitude cyclical Density and Poisson’s ratio inversion. Firstly,

density is updated independently from Vp to optimise the impedance; after convergence, impedance is kept

constant and density and Poisson’s ratio are inverted for cyclically. In panel a, the starting model (black)

and the final model at this stage (red). In panel b, the envelope of the synthetic seismogram (red) overlaid

to the real (blue) and percentage misfit as a function of offset, at the start and at the end of the stage (dashed

and solid grey lines).
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Figure 16. Inversion results interpretation. In panel a) inverted P-impedance, density and Poisson’s ratio.

In panel b) PSDM seismic section with location of the acquisition site (left vertical line) and core posi-

tion (right vertical line). Overlaid to the acquisition site, the red line indicates the width of the acquisition

streamer. Note how the vertical dimension is greatly exaggerated. In panel c) wet bulk density, fractional

porosity and sedimentary column from log; the latter is a curve whose values are proportional to the relative

abundances of clay, silt, sand, gravel and lithified sediment. The labelled units are colour-coded to highlight

the correlation between the inversion results and the ground-truth.
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APPENDIX A: EFFICIENT RECEIVER GHOST PREDICTION IN THE GENERAL

VARYING STREAMER DEPTH CASE

A recorded seismic reflection pressure wavefield is the convolution between a purely up-going

wavefield and the impulse response of the acquisition system as a function of receiver depth, free-

surface reflection coefficient and spatial frequency (Aytun, 1999). The total wavefield at depth h

in the frequency-wavenumber domain can be obtained from the up-going field Pk
−(h0) as:

Pk(h, r0) = Pk
−(h0)F1k(h, r0)F2k(h, h0) (A.1)

where:

F1k(h, r0) = (1 + r0e
(−j2kzh)) (A.2)

predicts the receiver ghost at depth h as a function of the vertical wavenumber kz =
√
k2 − k2x,

with a free-surface reflection coefficient equal to r0, whereas:

F2(h, h0) = e(jkz(h−h0)) (A.3)

is the downward propagation operator from h0 to h accounting for the travel-time difference per

each plane-wave component. The time-offset domain seismogram is obtained via two-dimensional

Fourier inverse transformation:

d(t, x) = F (−1){Pk(h, r0)} (A.4)

In the general case of offset-varying streamer depth and sea-surface reflection coefficient, the com-

plete N-channels seismic gather can be obtained by selecting each trace from the corresponding

redundant-offset domain gather and then merging the offsets. A compact mathematical formula-

tion exploits the properties of the two-dimensional dirac delta function:

di(t, x) = F (−1){Pk(h(i), r0(i))} (A.5)

d(t, x) =
N∑
i=1

∫ +∞

−∞

∫ +∞

−∞
δ(t− τ, xi)di(τ, xi)dτdx (A.6)

As opposed to an explicit full wavefield modelling, only the computation of the up-going wave-

field at constant depth is required, and the whole gather is obtained by signal manipulation, with

significant savings in the computing cost.
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In general, the filter parameters h and r0 are not known in advance with the accuracy required

by UHF seismic modelling and need to be estimated from the data. The receiver ghost loci in the

frequency-offset (Fx) domain are a function of the receiver depth:

fn(xi) = n
Vw

2hxi cos(θ(i))
(A.7)

where n indicates the order of the harmonic, Vw is the water layer velocity and θ is the reflection

angle from the sea-floor, which can be approximated as the ratio between the traveltimes (Pinson,

2009):

θ = (t0/ti) (A.8)

provided that t0 corresponds to a near-vertical reflection. Eq. A.7 establishes a linear relationship

between receiver-ghost null-frequencies and the reciprocal of the receiver depth as a function of

offset. The estimation of the offset-dependent receiver depths can be then cast as a linear inverse

problem (Aster et al., 2005); provided that more than one harmonic per offset is available, the

problem is over-determined and the linear formulation is convenient to derive robust confidence

intervals for the solution (Menke, 1989; Aster et al., 2005). In Fig. A1 we show the observed null

frequency versus the predicted null frequency for the estimated depth, overlaid to the frequency-

offset amplitude spectrum of the real data. The estimated depth profile in the lower panel shows a

clearly sagging geometry and the effect of the tail-buoy in the far-offset channels.

The reflection coefficient per each each channel can be conveniently obtained as the solution

of a non linear optimisation problem using deterministic algorithms as simple as the bisection

method (Burden & Faires, 1985); the optimal r0(xi) maximises the normalised cross-correlation

value between the predicted trace and the desired trace at the appropriate offset. Although this step

is model-based, it only requires an accurate a-priori estimate of the sea-floor depth: the normalised

cross-correlation removes the dependency of the results on the accuracy of the sea-floor reflection

AVO, while signal tapering around the sea-floor reflected arrival helps to attenuate the bias due to

the inaccuracies of the elastic model. The estimated reflection coefficient obtained for the real data

didn’t differ significantly from -1 and hence are not shown here.
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(a)

(b)

Figure A1. Streamer depth estimation. In panel a, the frequency-offset power spectrum with overlaid the

picked and the predicted null frequencies; the latter are computed using Eq. A.7 from the inverted streamer

depth shown in panel b. Note that the sagging receivers’ depth profile and the uplift in the farther channels

due to the use of a tail-buoy.
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