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Applicability of Frozen-Viscosity Models of
Unsteady Wall Shear Stress

A. E. Vardy, F.ASCE1; J. M. B. Brown2; S. He3; C. Ariyaratne4; and S. Gorji5

Abstract: The validity of assumed frozen-viscosity conditions underpinning an important class of theoretical models of unsteady wall shear
stress in transient flows in pipes and channels is assessed using detailed computational fluid dynamics (CFD) simulations. The need for
approximate one-dimensional ð1DÞfx; tg models of the wall stress is unavoidable in analyses of transient flows in extensive pipe networks
because it would be economically impracticable to use higher order methods of analysis. However, the bases of the various models have never
been established rigorously. It is shown herein that a commonly used approach developed by the first authors is flawed in the case of smooth-
wall flows although it is more plausible for rough-wall flows. The assessment process is undertaken for a particular, but important, unsteady
flow case, namely, a uniform acceleration from an initially steady turbulent flow. First, detailed predictions from a validated CFD method are
used to derive baseline solutions with which predictions based on approximate models can be compared. Then, alternative solutions are
obtained using various prescribed frozen-viscosity distributions. Differences between these solutions and the baseline solutions are used
to determine which frozen-viscosity distributions are the most promising starting points for developing 1Dfx; tg models of unsteady com-
ponents of wall shear stress. It is shown that no frozen-viscosity distribution performs well for large times after the commencement of an
acceleration. However, even the simplest approximation (laminar) performs well for short durations—which is when the greatest amplitudes
of the unsteady components occur. DOI: 10.1061/(ASCE)HY.1943-7900.0000930. This work is made available under the terms of the
Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.

Author keywords: Unsteady friction; Effective viscosity; Wall shear stress; Frozen-viscosity; Turbulence models; Viscosity distribution.

Introduction and Outline of Paper

The simulation of unsteady fluid flows in extensive pipe or duct
networks such as water supply, sewerage, oil and gas lines, and
railway tunnels is nearly always undertaken using one-dimensional
ð1DÞfx; tg methods in which no explicit account is taken of lateral
variations in a cross section. This is a practical necessity because
the use of two-dimensional (2D) and three-dimensional (3D) meth-
ods would be prohibitively time-consuming. Fortunately, 1Dfx; tg
approximations are sufficiently accurate for most practical pur-
poses and, indeed, they can sometimes yield more accurate predic-
tions than their 2D/3D counterparts. This may be so, for instance,
when empirical resistance coefficients are known with good accu-
racy in pipes with irregular surface finishes. Nevertheless, there are
also cases when the consequences of 2D/3D flow phenomena are
of special importance. In such cases, it can be difficult to develop
1Dfx; tg approximations that provide adequate representations
of the phenomena. One example is the detailed response of flows

after a strong change of acceleration or deceleration. In particular,
the response of wall shear stresses depends strongly on the rela-
tionship between turbulence timescales and bulk-flow timescales
(e.g., Ghidaoui et al. 2002).

In this paper, attention focuses on a special case of unsteady
flow in which an initially steady flow in a pipe is suddenly accel-
erated. The ultimate aim is to enhance the capabilities of 1Dfx; tg
methods of analyzing such flows, but the simulations presented
herein are focused on radial changes in time and are obtained using
2Dfr; x; tg or, when appropriate, 1Dfr; tg analyses. The 1Dfx; tg
methods are needed by analysts wishing to study unsteady flows in
extensive networks of pipes, and so on. Evidence is drawn from
direct numerical simulation (DNS) studies that have been used else-
where to study the flow in detail and to validate Reynolds-averaged
Navier Stokes (RANS) models based on assumed models of turbu-
lence. The DNS simulations are possible only at relatively low
Reynolds numbers, but the RANS models can be used for much
higher Reynolds numbers. They are used herein to investigate
the overall flow behavior and to validate underlying assumptions
in the methods used to enhance 1Dfx; tg approximations. Particular
attention is paid to sustained periods of flow in which the turbu-
lence structure responds much more slowly than the bulk velocity
of flow.

Herein, attention is focused on accelerating flows of an incom-
pressible fluid in a straight pipe of circular cross section. The pre-
sented results are applicable only in regions sufficiently far from
boundaries for there to be negligible axial variation of the kinematic
conditions. There are radial variations (in time and space), but no
axial variations. Furthermore, for ease of interpretation, the accel-
erations are either (1) constant or (2) constant and then zero.

For completeness, it is useful to clarify the intended interpreta-
tion of the word acceleration. Except where the context requires
otherwise, the word is used herein in a physical sense, implying
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an increasing velocity amplitude rather than in a strictly mathemati-
cal sense (in which, for example, a change from −5 to −3 m=s
would be regarded as positive acceleration). The illustrative exam-
ples are chosen in such a manner as to avoid ambiguity in this
respect and, in particular, to avoid flow reversals. Physically, the
importance of the phenomena studied herein tends to be greatest
when the Reynolds number of the initial condition is small so
the focus of the paper is on flows accelerating from small to larger
Reynolds numbers. Significant differences can exist between the
behaviors of accelerating and decelerating flows (He et al. 2008;
Ariyaratne et al. 2010), partly because the velocity profile in a de-
celerating flow is less stable than that in an accelerating flow (as is
also the case for spatial accelerations and decelerations).

The response of turbulence and other flow properties to a sud-
denly imposed acceleration is described in detail in the following
section using computational fluid dynamics (CFD-RANS) simula-
tions based on the Launder-Sharma low–Reynolds number model
of turbulence (Launder and Sharma 1974). Comparisons are then
made with equivalent predictions based on other models of turbu-
lence. These show strong differences in important aspects, but also
show close agreement during early stages of the acceleration. The
focus thereafter is on these early stages, and particular attention is
given to the behavior of the wall shear stress, for which 1Dfx; tg
models are ultimately required in engineering practice. It is shown
that the use of prescribed radial distributions of the effective kin-
ematic viscosity of the flow is especially well-suited to enabling
certain consequences of inherently 2D behavior to be encapsulated
in 1Dfx; tg outcomes. The true viscosity distributions cannot be
known a priori, so the possibility of doing this with simplified dis-
tributions is explored. Simple applications of the 1Dfx; tg out-
comes are presented, and implications for the extension of the
analysis to more general flows are considered. The paper closes
with concise conclusions.

Flow Response to Suddenly Imposed Acceleration

Fig. 1 shows successive profiles of axial, local-mean components of
velocity and shear stress in an axially uniform turbulent flow accel-
erating at a constant rate from an initially steady, smooth-walled
pipe flow. The shear stresses are sums of the viscous and turbulent
contributions, calculated from ρðν þ νtÞ∂U=∂y, where ν and νt are
the molecular and turbulent eddy viscosities, respectively. The fig-
ure shows predictions obtained using CFD based on the Launder-
Sharma (LS) low–Reynolds number model of turbulence. The
1Dfr; tg numerical method is described in detail by He et al.
(2008) and Ariyaratne et al. (2010) and needs not be restated here.

It is shown in the next section that the detailed outcome is sensitive
to the choice of turbulence model, but that is unimportant at this
stage of the paper because attention is focused on qualitative behav-
ior, not fine detail. More important, the sensitivity is small during
the early time period when detailed use is to be made of the pre-
dictions. To facilitate comparisons with He et al. (2008), the fluid is
water (ρ ¼ 1,000 kg=m3, ν ¼ 10−6 m2=s), the pipe diameter is
50 mm, and the Reynolds number of the initial steady flow is
R ¼ 5,000. At the instant t ¼ 0, the flow instantaneously begins
to accelerate at a constant rate of 0.9 m=s2, reaching R ¼
150,000 at approximately t ¼ 3.2 s.

In the early stages of the acceleration (before R ≈ 40,000 in the
figure), the shear stress remains almost unchanged over most of the
flow cross section except close to the wall (i.e., y=R ≪ 1, where y is
the distance from the wall and R is the pipe radius). During this
period, the velocity increases almost uniformly over most of the
cross section. After further acceleration (R ≈ 80,000 in the figure),
the shear stress has changed strongly over more than half of the
radius, and the velocity profile differs markedly from its original
shape. In the core of the pipe, however, the shear stress remains
almost unchanged, and the velocity has continued to increase almost
uniformly. Subsequently (R ≈ 120,000), the conditions throughout
the cross section are qualitatively similar to those in a steady flow.
For instance, the shear stress distribution is approximately linear.

Fig. 2 shows corresponding histories of the velocity and shear
stress at successively increased distances from the wall. In each
case, there is clear evidence of a phenomenon propagating radially
inward from the wall to the axis. For example, at small times,
Fig. 2(a) shows the velocity increasing at almost the same rate
at each depicted location. The histories then deviate from this trend,
first at locations close to the wall and then at successively greater
distances. At some locations, the velocity reduces when the disturb-
ance is first encountered. At later times, however, it evolves
smoothly and continuously at all locations. Also, there is a quali-
tative difference between the response at y ¼ R=16 and the re-
sponses at greater distances.

The existence of a radially propagating phenomenon can also be
seen in the shear stress histories [Fig. 2(b)], and this shows further
evidence of the origin of the phenomenon. By inspection, a strong
change is seen at y ¼ R=16 (just after t ¼ 1.0 s) before it is seen at
either y ¼ 0 or y ¼ R=8 (at about t ¼ 1.2 s). That is, the disturb-
ance originates at a finite distance from the wall, not at the wall
itself. This is consistent with conclusions deduced by Laufer
(1954) from hot wire measurements of air flow in a 250 mm diam-
eter pipe. It is shown experimentally by He and Jackson (2000) and
computationally by He et al. (2008) that this is a consequence of
instability in the buffer layer beyond the dominantly viscous part of

(a) (b)

Fig. 1. Profiles of axial components of velocity and shear stress at successive R: (a) axial velocity; (b) axial shear stress (viscousþ turbulent)

© ASCE 04014064-2 J. Hydraul. Eng.
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the boundary layer. More recently, He and Seddighi (2013) have
associated such early responses to laminar-turbulent bypass transi-
tion. This effect is responsible for the different qualitative natures of
the velocity histories shown in Fig. 2(a) at y ¼ R=16 and y ¼ R=8.
In the core of the flow, the velocity increases linearly until the
arrival of the radially inward propagating front caused by the in-
stability initiated close to y ¼ R=16. The inward propagation speed
of the disturbance is shown by He and Jackson (2000) to be roughly
proportional to the friction velocity of the initial flow and to be
largely uninfluenced by the rate of acceleration. Close to the wall,
the velocity behaves in a more laminar-like manner until the arrival
of the outwardly propagating consequences of the instability.

The strong qualitative differences between the behaviors in
successive stages of the overall flow excursion are especially pro-
nounced in the acceleration history shown in Fig. 3(a). The general
behavior is implicit in the velocity histories in Fig. 2(a), but the de-
tailed behavior is clearer in Fig. 3. At very small times after the com-
mencement of the overall acceleration, the local acceleration is
almost identical at all y > 0. At y ¼ R=16, the rate begins to reduce
significantly after about 0.1 s, but large changes are not seen in the
graphs until much later. At about 1.2 s, the strong radially propagat-
ing front arrives at y ¼ R=8 and causes a sudden, large reduction. It
has similar, but less concentrated consequences at y ¼ R=4 and y ¼
R=2 at later times, and it reaches the pipe axis at about 2.0 s, where it
“reflects” and begins to propagate radially outward. The amplitude of
the reflection decays rapidly as it reaches successively greater radii.

Although the strong front has the greatest visual impact in Fig. 3,
other features of the figure are also of interest. First, a small increase
in acceleration is seen at y ¼ R=4, y ¼ R=2, and y ¼ R at
approximately 1.3 s. Because the bulk acceleration of the flow is con-
stant (prescribed condition), the increased acceleration in the core re-
gion will necessarily be accompanied by simultaneous decrease at

other locations (as seen at y ¼ R=16, for example). That is, on aver-
age, the inwardly progressing disturbance tends to increase the varia-
tion of acceleration over the cross section. Before the disturbance
arrives at any particular radius, the flow at that radius and at all
smaller radii (and hence greater y=R) accelerates at an almost
common value. When the disturbance front arrives, the local
acceleration initially reduces strongly and then evolves gradually
toward a nearly steady value indicative of quasi-steady-velocity
profiles. Eventually, the radial distribution of acceleration reflects
the velocity profile shown at R ≈ 120,000 in Fig. 1. This is much
closer to a quasi-steady-flow profile than to the more uniform profile
at R ≈ 40,000.

The general behavior of the flow—in particular, the existence
of the radially propagating (turbulent) viscosity front—is character-
istic of suddenly accelerating flows. However, the fine details of
the behavior will depend upon the exact nature of the acceleration.
In the case considered above, the bulk acceleration is prescribed
to be zero until t ¼ 0 and to be constant thereafter. As shown in
Fig. 3(b), the amplitude of the required pressure gradient increases
continuously. The rate of increase is initially small, but there is a
rapid increase at about t ¼ 1.3 s and an on-going increase there-
after. Because the prescribed bulk acceleration is constant, the
whole of the variation in ∂p=∂x is attributable to changes in the
wall shear stress. This is why the sudden rapid increase in the am-
plitude of ∂p=∂x at about t ¼ 1.3 s coincides with the rapid
increase in wall shear stress shown in Fig. 2(b).

The general behavior illustrated in Figs. 1–3 is consistent with
experimental evidence presented, for example, by Maruyama et al.
(1976), He and Jackson (2000), and He et al. (2011). The flow is
characterized in three phases. Phase 1 is a period of delayed
turbulence response, Phase 2 is a period of strong turbulent response,
and Phase 3 is a continuing period of gradual response broadly

(a) (b)

Fig. 2. Evolution of axial components of velocity and shear stress: (a) axial velocity; (b) axial shear stress (viscousþ turbulent)

(a) (b)

Fig. 3. Evolution of axial components of acceleration and pressure gradient: (a) axial accelerations; (b) axial pressure gradient

© ASCE 04014064-3 J. Hydraul. Eng.
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similar to a succession of quasi-steady states. Phase 2 is found to
be complex. The sudden response is measured first in the axial
components of turbulence, and a further delay occurs before corre-
sponding changes occur in the radial and tangential components.
These three phases can be seen clearly in CFD predictions such
as those shown by He et al. (2008) using RANS modeling and
by Jung and Chung (2012) using large eddy simulation (LES)
modeling. They can also be seen in DNS simulations presented
by Seddighi et al. (2011) for flows in a planar 2D channel.

Throughout this paper, attention is focused on the particular ex-
ample presented above. The details of the overall flow behavior are
specific to this particular case, but the resulting conclusions are not.
He et al. (2008) studied the behavior of the corresponding flows for
a range of values of the initial Reynolds number, the pipe diameter,
and the rate of acceleration. It was found that the essential behavior
during Phase 1 was similar in all cases even though significant
differences existed in Phases 2 and 3. Subsequently, He and
Ariyaratne (2011) took an important step forward, showing that
the Phase 1 results collapse to a common curve when the data
are presented in a suitable nondimensional form. As a consequence,
the use of a single case herein is sufficient provided that attention is
focused on the behavior during Phase 1.

Sensitivity to Turbulence Model

Fig. 4(a) compares wall shear stress histories predicted using differ-
ent turbulence models, namely, (1) LS (as in Fig. 2), (2) Chang,
Hsieh, and Chen turbulence model (CHC; Chang et al. 1995),
(3) γ − Rθ (Langtrry and Menter 2009), and (4) v2–f (Durbin
1991). All four of these are so–called low–Reynolds number mod-
els of turbulence and so may be expected to characterize the accel-
erating flow much better than conventional equilibrium models that
are tailored to steady flows. The 2D fr; x; tg predictions are based
on the commercial CFD package Fluent 13.0 using an axisymmet-
ric computational domain with a pipe radius of 25 mm and a length
of 8 m. Standard velocity inlet and mass outflow boundary condi-
tions are applied at the inlet and outlet, respectively. The flow is
effectively axially independent about 5 m from the inlet, and the
conditions presented herein are even further downstream—at x ¼
7.5 m (L=D ¼ 160).

The governing equations are discretized using a second-order
upwind spatial scheme and a second-order implicit temporal
scheme described in detail by Gorji et al. (2014). The presented
results are based on a time step of 0.0002 s and a spatial mesh
of 100 × 30 (radial × axial). The normalized wall distance (yþ) of
the wall adjacent node is less than 0.6 throughout the early stages of
flow, thereby complying with the low–Reynolds number turbulence

models criterion and avoiding the need for empirical wall functions.
Systematic sensitivity tests have been performed to ensure near
independence on the time step and the spatial mesh, especially dur-
ing the early stages of flow—in which attention is paid below to
small differences between solution pairs, not only to absolute val-
ues in individual solutions. Further simulations using time steps of
0.002 and 0.00002 s show negligible difference, as do further sim-
ulations using 140 and 180 radial mesh points, although a mesh of
70 points shows small differences. The axial mesh size is of low
importance because all presented results are in the region of axially
uniform flow.

By inspection, each of the turbulence models predicts similar
qualitative behavior, but there are strong differences in the timing
and character of the radially moving front triggered by the delayed
turbulence response to the acceleration. The existence of such
strong differences is clearly undesirable, but it is an inevitable con-
sequence of the state of the art in the development of models of
turbulence suitable for use in CFD-RANS simulations. This defi-
ciency has been discussed, for example, by Scotti and Piomelli
(2002) and Cotton (2007). More recently, Gorji et al. (2014) have
compared predictions obtained using various turbulence models
with DNS predictions for suddenly accelerating flow in a planar
2D channel, showing that each model tends to have advantages dur-
ing some phases of the flow, but disadvantages in others. For ex-
ample, some predict the timing of key events quite well, but are less
good at predicting rates of change. Likewise, others predict aspects
of the unsteady behavior quite well, but are less good at repre-
senting the initial steady-flow and the subsequent quasi-steadily
accelerating flow. Mathur and He (2013) demonstrated that the im-
plementation of the Launder-Sharma model of turbulence in Fluent
13.0 (and earlier versions) is unsatisfactory. They demonstrated
much more satisfactory agreement using an alternative implemen-
tation. The improved LS model is used herein.

It is not the purpose of the present paper to attempt to infer rea-
sons for the differences between the various different models of
turbulence. Instead, the purpose is to assess the extent to which it
is possible to develop models that are much simpler than those used
herein, but that are nevertheless suitable for underpinning 1Dfx; tg
simulations of unsteady flows. At first sight, this objective appears
to be implausible in the light of Fig. 4(a), but that is not actually the
case. On the contrary, advantage can be taken of a highly positive
feature of the figure, namely, strong similarities in the predicted
behavior during the early part of the acceleration before the sudden
turbulence response. This is highlighted in Fig. 4(b), which shows a
subset of the same data at an expanded scale. By inspection, there is
very little sensitivity to the assumed turbulence model in this early
period of the acceleration.

(a) (b)

Fig. 4. Wall shear stress predictions using four turbulence models: (a) wall shear stress, τw; (b) τw, expanded scale

© ASCE 04014064-4 J. Hydraul. Eng.
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Strictly, the fact that all of the models yield similar predictions
does not, in itself, guarantee that the predictions are meaningful.
However, because a similar outcome was found by Gorji et al.
(2014) for planar flows and included close agreement with DNS
models, there is a high probability that the present predictions
are reliable during the early period of the acceleration. It follows
that use may reasonably be made of the outcomes in the develop-
ment of approximate methodologies for use in 1Dfx; tg analyses.
In particular, it is reasonable to use the CFD predictions as a basis
for formulating methods of simulating evolving wall shear stresses
in unsteady pipe flows—provided that the resulting models are in-
tended for use only in periods of flow that are comparable with
those considered in Fig. 4(b).

Although the ultimate aim of this paper is to assist analysts us-
ing 1Dfx; tg methods to deduce wall shear stresses such as those in
Fig. 4(b), it is not expected that this will be done directly. Instead, it
is acknowledged that methods of predicting steady-flow wall shear
stresses are already widely available and are routinely built into
commercial and other software packages. Instead of replacing these
methods in their entirety, it is advantageous to retain them and to
provide expressions that predict only additional contributions from
the unsteadiness. That is, the target is to find adequate representa-
tions of an unsteady component of wall shear stress τwu, defined as
the difference between the actual stress τw and the corresponding
stress in a steady flow with the same instantaneous flowrate τws,
that is,

τwu¼defτw − τws

In a practical analysis, the quasi-steady and unsteady compo-
nents τws and τwu are evaluated independently and are then summed
to give the required total τw. Typically, the steady component is
evaluated using expressions that have been developed and tested
over many years. This two-step approach has the advantage of en-
abling 100% compatibility to be achieved when incorporating the
analysis into software packages that already allow for quasi-steady
shear stresses. Provided that the calculated unsteady component τwu
tends to zero as the true influence of unsteadiness tends to zero, its
use will not change predictions for steady flows. This is an impor-
tant practical benefit because different steady flow approximations
are used in various commercial packages—either explicitly or be-
cause of differences in the underlying numerical discretizations.

In principle, it is possible to develop expressions describing
τw directly instead of describing only the unsteady component.
In practice, however, this would downgrade accuracy because as-
sumptions that are necessary to enable the development of analyti-
cal expressions that allow for unsteadiness would then also affect
the accuracy of the quasi-steady component in end-user simulations.

That would be a potential disadvantage in all flow regimes, and it
would be especially unsatisfactory in regions of flow that are either
steady or nearly so. Many such regions exist in typical analyses of
unsteady flows in pipes. Fig. 5(a) shows variations of τwu predicted
using each of the four turbulence models illustrated above. The val-
ues shown in the figure have been derived by undertaking indepen-
dent simulations of steady flows with each model and subtracting
the results from those shown in Fig. 4(a). However, instead of
undertaking multiple independent simulations for a large number
of truly steady flows, the quasi-steady component τws has been ob-
tained in the same manner as in Fig. 4 except for the use of an
extremely small acceleration rate. To ensure convergence, the sim-
ulations were repeated until a further reduction by a factor of ten in
the acceleration had negligible influence. This approach is highly
convenient for the purpose of data manipulation, and it has the spe-
cial advantage of ensuring 100% compatibility between the grid
structures and the numerical algorithms used in determining τw
and τws. This minimizes the magnification of rounding errors that
are always possible when evaluating the difference between two val-
ues that are nearly equal—as is sometimes the case with τw and τws.

Water-Hammer

General unsteady flows commonly include periods of gently vary-
ing acceleration extending over large timescales corresponding
to—or perhaps much greater than—those considered above. In
such periods, the wall shear stresses tend not to vary greatly from
values that apply in steady flows at the same instantaneous Reyn-
olds numbers. That is, the unsteady component of shear stress τwu
is only a small proportion of the overall stress τw. In water-ham-
mer-like flows, however, periods of gently varying flow such as this
are punctuated by occasional changes that are both large and sud-
den. As a first approximation, each such change may be character-
ized as a rapid change in velocity that, if regarded as occurring
linearly, is equivalent to an isolated, short-lived period of constant
acceleration. Alternatively, the pulse may be regarded as a combi-
nation of an unending, constant, positive acceleration commencing
at the beginning of the pulse and an unending, constant, negative
acceleration (deceleration) of equal magnitude commencing at the
end of the pulse. An example of this type of pulse is presented be-
low. For present purposes, however, it is sufficient to note that the
timescales associated with the passing of water-hammer wavefronts
of this sort can be much smaller than those implied by Figs. 4(b)
and 5(b). When this is so, the greatest influence of the unsteady
wall shear stress can be modeled with reasonable accuracy without
taking account of the delayed turbulence response in Phase 2 of the
overall process.

Fig. 5. Unsteady component of wall shear stress, τwu ¼ τw − τws: (a) unsteady component, τwu; (b) τwu, expanded scale
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Because the present analysis is developed for axially uniform
conditions, it might appear illogical to apply its outcomes in studies
of water-hammer-like flows. However, this is in fact reasonable. At
any particular axial location, the change caused by any particular
water-hammer wavefront approximates closely to a rapid change
in axial velocity followed by a gradual adjustment of the radial
velocity distribution. That is, the dynamics of the radial diffusion
have little local influence on the wavefront itself (although the cu-
mulative influence on a wavefront traveling large distances can be
significant). Accordingly, for the purpose of modeling the radial
changes, the influence of the waves at any location is closely equiv-
alent to an applied bulk-acceleration history. For completeness, it
is acknowledged that the existence of water-hammer wavefronts
implies the existence of tiny density changes as well as velocity
changes. However, these will have negligible influence in their
own right on the processes that control the turbulent development.
Likewise, no account is taken of other second-order phenomena
such as radial acoustic modes in pressure wavefronts.

Frozen-Viscosity Approximations

To develop an analytical model of τwu that can be incorporated into
a 1Dfx; tg analysis, it is necessary to make use of approximations
that represent the consequences of turbulence as functions of bulk
flow properties such as the mean velocity, the mean acceleration,
and rates of change thereof. Furthermore, it is important to avoid
excessive increases in computational requirements in comparison
with those used in conventional 1Dfx; tg analyses. The first of
these requirements prevents the adoption of methods such as those
used in CFD turbulence models, and the second prevents the use of
models that would require extensive calculations at every grid point
in every time step of an analysis.

The best current methods of meeting these objectives stem from
work on unsteady laminar flow, for which fully analytical solutions
exist for some forms of accelerating pipe flows. Constant viscosity
examples include the well-known solution presented by Szymanski
(1932) for acceleration from rest under the action of a prescribed,
constant pressure gradient. Corresponding solutions for nonconst-
ant pressure gradients include Uchida (1956) and Das and Arakeri
(2000). Vardy and Brown (2010, 2011) have shown that such flows
can be analyzed relatively simply by the use of Finite Hankel
Transforms, and they have also used this approach to study flows
in which viscosity varies with time. Other authors, that is, Costa
and Macedonio (2003) and Adegbie and Alao (2007), have consid-
ered viscosity-dependence on temperature, albeit in ways that
effectively reduce to a prescribed time-dependence. Ng (2004),

Vasudevaiah and Rajagopal (2005), and Massoudi and Phuoc
(2006) have obtained solutions for flows in which the viscosity ex-
hibits pressure-dependence. In these cases, however, account needs
to be taken of the pressure itself, not only the pressure gradient. As
a consequence, the viscosity varies along the pipe, thereby intro-
ducing an additional complication that is avoided herein.

These examples use analytical methods, thereby yielding solu-
tions that of general applicability. However, the penalty for achiev-
ing this is a necessary restriction to simple flow conditions. Zielke
(1968) recognized that the applicability of analytical methods could
be greatly extended by using a convolution to represent the wall
shear stress as a function of the acceleration history of the flow.
He showed how such a relationship could be obtained for flows
with constant viscosity and then used independently in numerical
simulations of general, unsteady laminar flows. Vardy et al. (1993)
showed how an extension of Zielke’s method could be used in a
similar manner for turbulent flows, making use of a highly simpli-
fied representation of turbulent viscosity used by Wood and Funk
(1970). Subsequently, Vardy and Brown (1995, 2003) and other
authors (e.g., Zarzycki and Kudzima 2004) have published succes-
sive improvements to the model based on the increasingly detailed
representations of turbulent viscosity distributions. Further papers
have addressed efficient numerical implementations of methods
used to approximate underlying weighting functions.

The prescribed turbulent viscosity distributions used in all of
these cases have two features in common. First, they approximate
the true radial distributions of the effective viscosity, and second,
they treat the chosen distributions as constant (frozen). These sim-
plifications are necessary to achieve convenient analytical relation-
ships between the wall shear stress and the bulk flow history, but
they inevitably limit the range of approximate validity of the result-
ing expressions. The implications of the simplifications are ex-
plored in the following section.

Dependence of Predicted Wall Shear on Prescribed
Effective Viscosity

Fig. 6(a) shows the evolution of the effective kinematic viscosity
(laminar þ turbulent) for the case presented above based on the LS
model. By inspection, the influence of the wave-like propagation of
the delayed turbulence response to the initiation of acceleration is
even stronger than that of the acceleration and shear stress shown in
Fig. 4, and this has big implications for the development of meth-
ods that rely on predetermined effective viscosity distributions.
First, the actual distribution shown in Fig. 6 is highly specific to
the particular flow conditions that give rise to it. Second, even

(a) (b)

Fig. 6. Evolution of effective kinematic viscosity, ν ¼ νlam þ νturb: (a) Phases 1, 2, and 3; (b) early stages of Phase 1
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if the outcome were less sensitive to the particular flow, it would be
very difficult to incorporate it into a general method of analysis.
Furthermore, the true situation is even more complex than this de-
scription implies because the detailed behavior of the turbulent
viscosity is highly specific to the particular turbulence model used
in the simulations. Indeed, very different detailed responses are ob-
tained with other turbulence models—as illustrated by the surface
plots shown in Fig. 7. These differences are a clear indication that
turbulence models for RANS computations have not yet advanced
sufficiently to address this type of flow reliably, and as a conse-
quence, it must be concluded that it would be pointless to base
the proposed 1Dfx; tg methods on the detailed outcomes of any
particular 3D model. However, a much more positive conclusion
is possible if attention focuses on conditions preceding the strong
response. In this period, as shown in Fig. 6(b), the turbulent vis-
cosity varies very little—although there is evidence of a tendency
for relaminarization close to the wall. Furthermore, the predicted
values of the effective viscosity vary even more slowly than those
of the shear stress [Fig. 2(b)]. This may be interpreted as strong
evidence in support of the so-called frozen-viscosity models of un-
steady skin friction developed, for example, by Vardy and Brown
(2003).

Even during the period when frozen-viscosity assumptions are
plausible, the proposed 1Dfx; tg models of unsteady wall shear
stress cannot be based on detailed radial variations of turbulent vis-
cosity because these are inherently unknown during 1Dfx; tg
analyses. Instead, it is necessary to use approximate distributions
of the turbulent viscosity, and so it is important to know which char-
acteristics of the true distributions need to be reproduced faithfully
and which may be modeled in a simplified manner without signifi-
cant loss of accuracy. This matter is addressed in Fig. 8, which
shows predicted variations of the unsteady component of wall shear
stress based on various approximations to the true distribution of
effective viscosity. Also shown, for comparison purposes, is the
wall shear stress in the preexisting steady flow. The curves labeled
ND Solve (numerical solution software; NDS) are 1Dfr; tg numeri-
cal solutions of the axisymmetric Navier-Stokes equations obtained
using the software NDSolve in the commercial package Mathema-
tica. In each case, the initial velocity distribution ufr; 0g is copied
directly from the baseline CFD solution, as is the pressure-gradient
history dp=dxftg throughout the simulation period. In the par-
ticular case of Fig. 8(a), the viscosity distribution throughout the

simulation period is also copied, but this case is only for reference
purposes. In the remaining cases, the viscosity distribution is
chosen independently and is held constant for the duration of
the simulation.

Extensive checks have been undertaken to ensure the validity of
the resulting solutions. The most important of these are
1. Independent solutions have been obtained with successively

demanding specifications for convergence criteria until the
predicted results have become effectively independent of the
prescribed criteria;

2. The self-consistency of the solutions has been confirmed by
evaluating the wall shear stress τw in two independent ways.
First, use has been made of the bulk flow momentum equation,
namely

∂p
∂x − 4

D
τw ¼ ρ

∂U
∂t

where p is the pressure (prescribed uniform in any cross
section), ρ is the fluid density (assumed uniform throughout),
U is the bulk mean velocity, and x and t are the axial and time
coordinates. Second, the stress is inferred independently from
the local conditions at the wall using

τw ¼ μ
∂u
∂y

in which μ denotes the local effective viscosity, u is the local
axial velocity, and y is the axis normal to the wall. Physically,
these two methods of deducing τw are equivalent; numerically,
however, they will yield different results unless adequate grids
and convergence criteria are chosen. This method of checking
the self-consistency of the solution is highly demanding be-
cause both evaluations are based on differences between two
nearly equal numbers.

In Fig. 8(a), the prescribed distribution of the effective viscosity
is unmodified from the CFD output, and so the predicted shear
stress should be identical to that obtained from the CFD analysis.
In practice, the agreement is so close that it is difficult to distinguish
between the two graphs in the figure. This provides validation that
is not usually practicable for CFD analyses, and in particular, it
confirms the suitability of the numerical grid structures used in both
analyses. The original reasons for using different methodologies

Fig. 7. Evolution of viscosity profiles—various turbulence models
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stemmed from different backgrounds of the various authors of the
paper, but the cross-validation of their predictions considerably
increases confidence in the robustness of the predictions.

Fig. 8(b) assesses the validity of using frozen-viscosity models
of turbulence in this type of flow. That is, the prescribed viscosity
distribution throughout the whole simulation is identical to that
t ¼ 0 in Fig. 8(a). Once again, the agreement is very close, thus
demonstrating that, during the period simulated, the evolving shear
stress depends much more strongly on the initial turbulence state
than on subsequent deviations from it. This validates the frozen-
viscosity principle. That is, the primary response of the flow to the
suddenly imposed change of pressure gradient occurs before turbu-
lence diffusion can exert its influence. This is consistent with the
evidence presented in Fig. 6.

Fig. 8(c) begins to assess the detail with which it is necessary to
model the radial distribution of the effective viscosity. Instead of
using the distribution obtained from the CFD analysis, the distri-
bution input to NDSolve is a simple constant, namely, the molecular
viscosity itself. That is, the evolving flow is analyzed as though it
were laminar—although, of course, the prescribed initial velocity
distribution would not be possible in a steady laminar flow. As a
consequence, the flow state would change after t ¼ 0 even if there
were no change in the imposed pressure gradient. Therefore, in the
enforced accelerating flows studied herein, this is a second cause
of change after t ¼ 0. However, except for very small imposed
accelerations, the inertial cause is much stronger than the nonequi-
librium state of the initial velocity profile, which can exert its
influence only through diffusive means.

Once again, the predicted wall shear stress is very similar to that
for the fully turbulent case. At first sight, this outcome might appear
to merit surprise. Indeed, the authors did not initially expect such
close agreement. However, with the benefit of hindsight after nu-
merous simulations with alternative assumed viscosity distribu-
tions, the explanation has been found to be simple, namely, that
the early-time response of the flow depends almost exclusively
on the assumed distribution close to the wall. Remote from the wall,

the whole flow accelerates at the same rate with negligible change
of turbulence conditions or gradients of local mean-velocity, and so
on. Very close to the wall, velocity gradients increase continually in
time, but even here, the viscosity distribution remains almost frozen
for a finite period. Thereafter, as predicted by He et al. (2008) using
CFD-RANS and confirmed by Seddighi et al. (unpublished data,
2013) using DNS, local instability begins near the outer edge of
the buffer layer and then diffuses both toward the wall and toward
the axis. Until this diffusive process penetrates deep into the wall
layer, diffusion therein is dependent on the preexisting viscosity
distribution. For smooth-walled flows, this implies that it is gov-
erned by laminar viscosity alone.

In addition to showing why the early-time behavior near the
wall in a strongly accelerating flow is influenced so strongly by
the near-wall viscosity distribution and so weakly by the more
remote viscosity distribution, this explanation shows why the
assumed nonequilibrium velocity distribution has negligible small-
time influence. It can exert influence only through the same diffu-
sive process that is such a weak partner in the early response to the
imposed overall acceleration.

This deduction has unfortunate implications for the first authors,
who have developed convolution models of unsteady wall shear
stress based on a bilinear approximation to the distribution of ef-
fective viscosity (see next section). As shown in Fig. 9, the bilinear
shape represents the overall distribution much more realistically
than a simple assumption of laminar flow, but it does not represent
the wall region well. Such a distribution is used in the simulation
presented in Fig. 8(d), and it strongly overestimates the unsteady
component of wall shear. The agreement with the CFD predictions
is substantially poorer than that based on other approximations, in-
cluding even the wholly laminar distribution. This demonstrates an
important limitation of the bilinear approach, but it also points the
way forward to eliminating the deficiency, namely, by improving
its representation of the true viscosity distribution close to the wall
as is done in models developed by Zarzycki and Kudzima (2004),
for instance.

(a) (b)

(c) (d)

Fig. 8. Influence of viscosity on predicted τwu ¼ τw − τws: (a) νNDSfr; tg ¼ νCFDfr; tg; (b) νNDSfr; tg ¼ νCFDfr; 0g; (c) νNDSfr; tg ¼ νlaminar;
(d) νNDSfr; tg ¼ νbilinear

© ASCE 04014064-8 J. Hydraul. Eng.

 J. Hydraul. Eng., 2015, 141(1): 04014064 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
D

un
de

e 
on

 0
3/

28
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Weighting Function Approximations

It is useful to outline the process followed in the derivation of con-
volution models of the unsteady component of wall shear stress for
use in 1Dfx; tg simulations. First, 2Dfr; x; tg analytical solutions
are obtained in the Laplace domain based on the prescribed frozen
distribution of viscosity, with the pressure gradient treated as a
parameter. Independent solutions are obtained for unsteady flow
and steady flow, and the difference is used to express the unsteady
component (τwu) as a function of the pressure gradient. When de-
sired, the Laplace inverse of this solution can be used to provide a
relationship between τwu and the pressure gradient history. In prac-
tice, however, it is more useful to undertake additional development
in the Laplace domain to enable the final result in the time-domain
to be expressed as a relationship between τwu and the bulk-flow
acceleration history. This formulation is beneficial in numerical
simulations of unsteady flows because the numerical evaluation of
spatial derivatives such as ∂p=∂x can be unreliable close to boun-
daries whereas temporal derivatives such as ∂U=∂t have no such
limitations (provided that the boundaries are stationary).

Attention needs to be drawn to an important feature of this pro-
cess, namely, that the same viscosity distribution is used in the in-
dependent developments for steady and unsteady flow. It is usually,
but not necessarily, taken to be equal to that in the initial steady
flow. This is an obvious choice for end-user applications in which
the initial flow is steady. As shown above, the assumed frozen state
is a good approximation for the fully unsteady flow, but it is a poor
approximation for the associated steady flow analysis because the
true viscosity distribution in a fully developed quasi-steady flow is
Reynolds number–dependent, and therefore evolves as the acceler-
ation proceeds. It is not possible to reflect the true behavior in the
convolution models discussed above because the analytical meth-
odology requires the use of identical viscosity distributions in the
independent steady and unsteady flow analyses. Without this con-
straint, the method used to infer an unsteady component from dif-
ferences between the steady and fully unsteady solutions would be
invalid. Furthermore, it is not feasible to allow for simultaneous
variations of viscosity in space and time in the Laplace domain
analysis. Important consequences of this limitation of convolution
models of unsteady friction are illustrated in the following section.

The need to use identical viscosity distributions in the steady
and unsteady parts of the development has big implications for
the interpretation of Fig. 8 above. In that figure, the CFD results
can be assumed to characterize the true behavior. In particular
• The viscosity distribution used in the unsteady flow analysis is

modeled explicitly (although it actually varies very little);

• The viscosity distributions used in the steady flow analysis are
also modeled explicitly. At each instant in the figure, the
relevant distribution corresponds to fully developed steady flow
conditions for the instantaneous Reynolds number;

• The initial conditions for both analyses are those for the steady
flow analysis at that Reynolds number; and

• The pressure gradient history is chosen to achieve a constant
acceleration of the bulk flow.
Likewise, the results presented for the prescribed-viscosity

distribution simulations satisfy
• The viscosity distribution used in the unsteady flow analysis is

(1) predetermined and (2) constant;
• The steady flow analysis is identical to that used for the

CFD case;
• The initial velocity distribution for the unsteady flow analysis is

identical to that used for the CFD analysis; and
• The pressure gradient history for the unsteady flow analysis is

identical to that used for the CFD analysis.
As a consequence of these choices, differences between

the CFD results and the corresponding results using prescribed-
viscosity distributions may be used to infer the influence of the
assumed effective viscosity distributions on the response of the
wall shear stress to sudden accelerations. The figure should
not, however, be regarded as an exact indicator of the perfor-
mance of actual convolution models of unsteady friction based
on prescribed viscosity distributions. This is because the ana-
lytical development of these is necessarily simplified in com-
parison with the numerical approaches used above. It may be
described as
• The viscosity distributions used in the steady and unsteady

analyses are identical and are both predetermined and constant;
• The common viscosity distribution and the consequential initial

velocity profile for the unsteady flow analysis are those for stea-
dy flow at the initial Reynolds number; and

• The pressure gradient history for the unsteady flow analysis is
not prescribed. It is a parameter in the convolution analysis and
also in the formulae derived therefrom and published for sub-
sequent use in end-user software. In practice, however, as indi-
cated above, the analysis is usually extended to enable the
history of the bulk-mean acceleration to be used as the indepen-
dent parameter in end-user software.
The most important consequence of using a unique, predeter-

mined viscosity distribution in the steady flow simulations is that,
in contrast with results in Fig. 8, the implied steady flow shear
stress is necessarily incorrect and becomes increasing so as the
acceleration proceeds. Furthermore, although the error may be only

Fig. 9. Elementary approximations to the distribution of effective viscosity (initial steady flow condition, R ¼ 5,000): (a) whole radius; (b) close to
the wall
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a small proportion of τws, it rapidly becomes a large proportion
of τwu, which is the sole output of the convolution models of
unsteady friction. This greatly limits the range of applicability
of the methods—although, fortunately, its importance is smallest
at early times, and this is when τwu is greatest.

The importance of the method of choosing initial conditions is
less easy to quantify. Clearly, initial conditions based on approxi-
mate viscosity distributions will be incorrect, and the errors will be
greatest for the least satisfactory approximations. However, iden-
tical initial conditions are used for both analyses (steady and un-
steady), so the effect is cancelled at t ¼ 0. The influence at greater
times will depend upon the particulars of the flow history in the
end-user application, but two general issues can be identified.
To illustrate these, note that τ ¼ μ∂u=∂y and compare the conse-
quences of this for (1) the bilinear approximation, and (2) the
wholly laminar approximation. For the bilinear case, the dimen-
sions of the distribution illustrated in Fig. 9 are (implicitly) chosen
by the end-user to achieve the correct value of τws for the chosen
Reynolds number. However, as shown above, the assumed nonuni-
form viscosity distribution near the wall leads to an overestimation
of the consequences of subsequent accelerations. In contrast, for a
wholly laminar viscosity, it is not possible to achieve compatibility
with the end-user’s initial conditions. If the wall shear stress (and
hence the pressure gradient) is matched, the implied initial Reyn-
olds number in the original analytical model will be far too great.
Alternatively, if the Reynolds number is matched, the implied ini-
tial wall shear stress and pressure gradient will be far too small.
Once again, however, these statements are true for both parts of
the weighting function development, so the effect cancels at
t ¼ 0. If it also cancels (or nearly so) as time increases, the con-
sequences of the initial mismatch might be small. In that case, it
would be reasonable to expect the performance of convolution
models based on a wholly laminar approximation to outperform
those based on a bilinear approximation, even though the individual
components of the latter are a closer match to the true end-user
condition.

Given this uncertainty, it must be concluded that there is no clear
evidence to justify the use of convolution models based on the
bilinear approximation in preference to that based on a wholly lam-
inar viscosity distribution. Models such as those developed by
Zarzycki and Kudzima (2004) allowing for the near-wall behavior
shown in Fig. 9 should outperform the bilinear model, and they
might also outperform the wholly laminar approach, especially
at larger times.

In addition to assessing the validity of the underlying bases
of convolution models, it is worth drawing attention briefly to
inaccuracies that commonly arise when they are implemented in

end-user software. Usually, to achieve a big reduction in the re-
quired CPU time, the weighting function is approximated by a
series of exponentials, broadly in a manner originally proposed by
Trikha (1975). However, it is important to ensure that the approxi-
mation is sufficiently accurate over the whole range of frequencies
to be studied by the software. Furthermore, irrespective of whether
exponential approximations are used, it is important, but not
straightforward, to ensure that the influence of the most recent time
step in the calculation sequence is evaluated accurately. This diffi-
culty arises because the weighting function is infinite at its time
origin. These issues have been addressed by, for example, Kagawa
et al. (1983), Schohl (1993), and Vardy and Brown (2007).

Influence of Prescribed Acceleration

Fig. 10 shows three numerical solutions obtained using a particular
end-user software package for 1Dfx; tg unsteady flow simulations,
namely, ThermoTun (www.ThermoTun.com) in which the bilinear
model of wall shear stress has been implemented (see the following
section). The package is usually used for simulating pressure waves
in air, but it can also be used to simulate unsteady liquid flows. In
these examples, the fluid and pipe properties are the same as those
used above (i.e., ρ ¼ 1,000 kg=m3, ν ¼ 10−6 m2=s, D ¼ 50 mm).
In Fig. 10(a), a constant fluid acceleration is prescribed and is iden-
tical to that used above (i.e., ∂U=∂t ¼ 0.9 m=s2). By inspection, the
evolution of the predicted unsteady component of wall shear stress
in the early stages of the acceleration approximates fairly closely to
that in the simulations presented above. However, whereas the CFD
values reach a maximum and then reduce and become negative, the
1Dfx; tg prediction increases monotonically and, at larger times
than those shown in the figure, becomes asymptotic to a constant
value. This qualitatively different behavior is an inevitable conse-
quence of the limitation highlighted in the previous section, namely,
the use of frozen-viscosity assumptions for the quasi-steady com-
ponent of flow as well as for the overall flow. This limits the du-
ration of the period of approximate validity of the solution.

In the curve labeled Ramp Accel in Fig. 10(b), the initial stages
of the flow are identical to those in Fig. 10(a), but the acceleration
ceases abruptly, thereby creating finite acceleration pulse and hence
a finite ramp in the velocity history. The duration of the ramp
Δtpulse has been chosen as 0.1 s, so that it is within the period for
which reasonable agreement is shown in Fig. 10(a) for the bilinear
behavior under consideration. Immediately after the acceleration
ceases, the predicted value of τwu begins to reduce rapidly in a
mirror-image manner to the original increase. At any instant dur-
ing this period, the imposed flow may be regarded as the sum of
(1) the original uniform acceleration, and (2) a second uniform

(a) (b)

Fig. 10. Influence of acceleration history on τwuð¼ τw − τwsÞ: (a) uniform acceleration [ThermoTun ver.6 (TM6) software ThermoTun]; (b) finite-
duration accelerations (All=TM6 with bilinear viscosity model)

© ASCE 04014064-10 J. Hydraul. Eng.

 J. Hydraul. Eng., 2015, 141(1): 04014064 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
D

un
de

e 
on

 0
3/

28
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

www.ThermoTun.com
www.ThermoTun.com
www.ThermoTun.com


acceleration of equal amplitude but opposite sign, commencing
0.1 s after the first. As a consequence, the net value of τwu can
be inferred from the uniform acceleration case. For example, the
value shown for the RampAccel curve at the instant t ¼ 0.4 s is
the difference between the values shown for the UniformAccel
curve at 0.4 s and at 0.3 s. This is the basis of the method used
in end-user software to implement the method of predicting the un-
steady component of the wall shear stress τwu. The instantaneous
velocity is regarded as a sum of successive finite acceleration
pulses, each of which can be treated as in the preceding description,
and the instantaneous value of τwu is the sum of the individual con-
tributions. In general, each acceleration pulse will be of a different
amplitude from the others, but that is not a major complication be-
cause the data shown in Fig. 10 can be expressed in a universal
form (for any particular pipe) by scaling the vertical axis by the
acceleration. In fact, the generalization can be extended to allow
for multiple pipes, but that is of little importance for the purposes
of this paper.

This process involves important approximations that signifi-
cantly limit its range of validity. As indicated above, the accuracy
of the predicted contribution of each pulse depends upon the suit-
ability of the assumed frozen viscosity distribution and upon the
consequences of using this distribution for the evaluation of the
steady-flow component τws. In end-user software, these constraints
are even more significant than is obvious from the above illustra-
tion because, in principle, different frozen-viscosity assumptions
should be made for each acceleration pulse in the summation of
pulses representing the historical changes in velocity. It is therefore
fortuitous that, for smooth-walled flows that are the main focus
herein, the frozen-viscosity can be represented with sufficient ac-
curacy by uniform laminar flow.

Fig. 10(b) includes a curve labeled StepChange. For this case,
the assumed acceleration is ten times greater than that used for the
RampAccel curve, but the duration of the pulse is reduced by a
factor of ten so that the overall velocity step is the same in both
cases. By inspection, this causes a much larger value of τwu at small
times, but the values at larger times are comparable with those for
the slower acceleration. The duration of the pulse is so short that it
cannot be seen easily in the figure, but it nevertheless has a major
influence on the amplitude of τwu at very small times. Indeed, if the
step were instantaneous, the predicted value of τwu at t ¼ 0 would
be infinite. This is a further source of complications in end-user
software—although, with suitable care, it can be overcome in a rel-
atively straightforward manner because the numerical integrations
are undertaken over finite time intervals, and the predicted τwu is
finite at all instants t > 0.

General Unsteady Flows

All of the examples presented above are based on smooth-wall
flows. This is an important class of flows, and it has the big advan-
tage of enabling accurate representations of conditions very close to
wall surfaces. However, a large number of practical applications of
unsteady flow involve rough-wall flows—either fully or partially
rough. In these flows, the influence of turbulence extends as far
as the wall, and so the use of an effective viscosity distribution with
a laminar wall region is not appropriate. Instead, the effective vis-
cosity at the notional wall surface exceeds the laminar viscosity,
and its value increases with increasing distance from the wall. This
condition is more similar to the bilinear approximation shown in
Fig. 8 than to the smooth-wall approximations based on a viscous
layer adjacent to the wall. Thus, although it is suggested above that
Zielke’s laminar flow expressions should be used in preference to

the Vardy-Brown smooth-wall relationships, this warning does not
apply to the corresponding rough-wall relationships (Vardy and
Brown 2004, 2007).

Irrespective of whether flows approximate to smooth-wall or
rough-wall conditions, the importance of unsteady components
of wall shear stresses tends to reducewith increasing Reynolds num-
ber. This is because the quasi-steady component tends to increase
approximately with the square of the velocity whereas the unsteady
component increases approximately linearly with the acceleration.
Duan et al. (2012) give further details, with special reference to the
implications for the overall damping of water-hammer flows. A re-
lated issue is the practicality of using small-scale models (physical
or numerical) to infer behavior at large scale (or vice versa). When
rapid accelerations exist, as in pressure waves such as those in
water-hammer applications, damping caused by unsteady friction
is unlikely to scale in a Reynolds-number independent manner.

Conclusions

Three characteristically different phases of turbulence response to a
suddenly imposed constant acceleration of an initially steady,
smooth-wall pipe flow have been described with particular refer-
ence to implications for existing methods of modeling unsteady
wall shear stress in 1Dfx; tg software using frozen-viscosity hy-
potheses. The main conclusions from the work may be summarized
as follows:
1. The predicted response of turbulence to the imposed accelera-

tion is strongly dependent on the turbulence model used in the
simulations. This is consistent with the outcomes reported
elsewhere for simulations using CFD-RANS, none of which
give a close match with fine details obtainable using DNS
or LES methods.

2. Of the three phases of flow considered, only the first can rea-
sonably be approximated by an assumption of unchanged ef-
fective viscosity from the preexisting steady flow. For this
phase, the predictions are not strongly sensitive to the chosen
turbulence model, so it is reasonable to use them to underpin
the development of the proposed simplified 1Dfx; tg models.

3. The predictions during the first phase have been compared
with alternative predictions based on approximations to the
expected radial distribution of viscosity. For the smooth-wall
flows under primary consideration, it has been found that very
simple assumed distributions yield acceptable outcomes, pro-
vided only that the assumed value in the wall region is the
molecular viscosity (or nearly so).

4. This condition is not satisfied by an assumption underpinning
a widely used method of modeling unsteady wall shear stres-
ses in pipe flows, namely, that developed for smooth-wall
flows by Vardy and Brown (1995, 2003). The bilinear viscos-
ity distribution used in that method enables the initial flow
condition to be represented well, but it causes changes in
wall shear stress during an accelerating flow to be exaggerated.

5. Implications of the work for developers of convolution mod-
els of unsteady components of friction in unsteady flows
in pipes have been discussed. It has been shown that, for
smooth-wall flows, convolution models based on a wholly
laminar viscosity distribution might outperform the Vardy-
Brown method even though the Vardy-Brown approximation
would be more realistic for independent analyses of either the
steady flow or the unsteady flow. Convolution models based
on more realistic distributions of the effective viscosity in the
wall region are expected to outperform either of the above
methods.

© ASCE 04014064-11 J. Hydraul. Eng.
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6. The work presented herein is limited to smooth-wall flows. For
rough-wall flows, the influence of turbulence extends to the
wall and the bilinear approximation is expected to be more
suitable than simpler approximations such as those that are
well-suited for smooth-wall flows. However, further work will
be needed to assess this prediction, and it might need to be
based on more reliable methodologies than the CFD-RANS
approach that has been shown to be justified for the principal
purpose of this paper.
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Notation

The following symbols are used in this paper:
D = diameter of pipe;

lam = laminar;
p = pressure;
R = radius of pipe;
R = Reynolds number (= ρD=ν);
r = radial coordinate;
s = steady-state component;
t = time coordinate;

turb = turbulent;
U = bulk flow mean velocity;
u = axial velocity component;
u = unsteady-state component;
w = wall;
x = axial coordinate;
y = distance from wall (¼ R–r);
ρ = mass density;
ν = kinematic viscosity;
τ = shear stress; and
0 = initial conditions (at start of a phase).
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