18 research outputs found

    Promoting Safe Mobility Among Elders by Increasing Awareness of Vehicle Modifications (EXECUTIVE SUMMARY)

    Get PDF
    This research project looks at one strategy to address the safety of older drivers, vehicular modifications. Specifically, a video demonstrating low-tech, low-cost features that may alleviate some driving challenges was produced to determine whether viewing the video would increase awareness of and motivation to use those features. Prochaska and DiClemente’s Transtheoretical Model of intentional behavioral change provides the theoretical framework for this study. This model posits five stages of change, a continuum over which the individual becomes more receptive to taking action

    Genome-wide association for milk production and lactation curve parameters in Holstein dairy cows

    Get PDF
    The aim of this study was to identify genomic regions associated with 305-day milk yield and lactation curve parameters on primiparous (n = 9,910) and multiparous (n = 11,158) Holstein cows. The SNP solutions were estimated using a weighted single-step genomic BLUP approach and imputed high-density panel (777k) genotypes. The proportion of genetic variance explained by windows of 50 consecutive SNP (with an average of 165 Kb) was calculated, and regions that accounted for more than 0.50% of the variance were used to search for candidate genes. Estimated heritabilities were 0.37, 0.34, 0.17, 0.12, 0.30 and 0.19, respectively, for 305-day milk yield, peak yield, peak time, ramp, scale and decay for primiparous cows. Genetic correlations of 305-day milk yield with peak yield, peak time, ramp, scale and decay in primiparous cows were 0.99, 0.63, 0.20, 0.97 and -0.52, respectively. The results identified three windows on BTA14 associated with 305-day milk yield and the parameters of lactation curve in primi- and multiparous cows. Previously proposed candidate genes for milk yield supported by this work include GRINA, CYHR1, FOXH1, TONSL, PPP1R16A, ARHGAP39, MAF1, OPLAH and MROH1, whereas newly identified candidate genes are MIR2308, ZNF7, ZNF34, SLURP1, MAFA and KIFC2 (BTA14). The protein lipidation biological process term, which plays a key role in controlling protein localization and function, was identified as the most important term enriched by the identified genes

    Expert-based development of a generic HACCP-based risk management system to prevent critical negative energy balance in dairy herds

    No full text
    The objective of this study was to develop a generic risk management system based on the Hazard Analysis and Critical Control Point (HACCP) principles for the prevention of critical negative energy balance (NEB) in dairy herds using an expert panel approach. In addition, we discuss the advantages and limitations of the system in terms of implementation in the individual dairy herd. For the expert panel, we invited 30 researchers and advisors with expertise in the field of dairy cow feeding and/or health management from eight European regions. They were invited to a Delphi-based set-up that included three inter-correlated questionnaires in which they were asked to suggest risk factors for critical NEB and to score these based on 'effect' and 'probability'. Finally, the experts were asked to suggest critical control points (CCPs) specified by alarm values, monitoring frequency and corrective actions related to the most relevant risk factors in an operational farm setting. A total of 12 experts (40 %) completed all three questionnaires. Of these 12 experts, seven were researchers and five were advisors and in total they represented seven out of the eight European regions addressed in the questionnaire study. When asking for suggestions on risk factors and CCPs, these were formulated as 'open questions', and the experts' suggestions were numerous and overlapping. The suggestions were merged via a process of linguistic editing in order to eliminate doublets. The editing process revealed that the experts provided a total of 34 CCPs for the 11 risk factors they scored as most important. The consensus among experts was relatively high when scoring the most important risk factors, while there were more diverse suggestions of CCPs with specification of alarm values and corrective actions. We therefore concluded that the expert panel approach only partly succeeded in developing a generic HACCP for critical NEB in dairy cows. We recommend that the output of this paper is used to inform key areas for implementation on the individual dairy farm by local farm teams including farmers and their advisors, who together can conduct herd-specific risk factor profiling, organise the ongoing monitoring of herd-specific CCPs, as well as implement corrective actions when CCP alarm values are exceeded

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    Get PDF
    Background: Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (<5 years) and older people (≥65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control. Methods: In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5° by 5° grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628. Findings: We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0·3 months [95% CI −0·3 to 0·9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3·8 months [3·6 to 4·0]) in temperate sites and longer duration (5·2 months [4·9 to 5·5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4·6 months [4·3 to 4·8]), as it was for metapneumovirus (4·8 months [4·4 to 5·1]). By comparison, parainfluenza virus had longer duration of epidemics (6·3 months [6·0 to 6·7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus −0·2 months [−0·6 to 0·1]; respiratory syncytial virus 0·1 months [−0·2 to 0·4]). Interpretation: This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Funding: European Union Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe (RESCEU)

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Promoting Safe Mobility Among Elders by Increasing Awareness of Vehicle Modifications (EXECUTIVE SUMMARY)

    No full text
    This research project looks at one strategy to address the safety of older drivers, vehicular modifications. Specifically, a video demonstrating low-tech, low-cost features that may alleviate some driving challenges was produced to determine whether viewing the video would increase awareness of and motivation to use those features. Prochaska and DiClemente’s Transtheoretical Model of intentional behavioral change provides the theoretical framework for this study. This model posits five stages of change, a continuum over which the individual becomes more receptive to taking action
    corecore