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1  |   INTRODUCTION

Milk production is mainly dependent on the shape of the 
lactation curve, defined as the graphical representation of 
milk yield over the course of the lactating period (Do et 
al., 2017; Ehrlich, 2011; El‐Awady, 2013). The shape of 

the lactation curve is characterized by the slope of the 
initial rise of the curve, peak yield, time to peak, the slope 
of the curve after peak yield (lactation persistency) and 
lactation length (El‐Awady, 2013; López et al., 2015; 
Rekik, Gara, Hamouda, & Hammami, 2003). Although all 
these characteristics are responsible for total milk yield 
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Abstract
The aim of this study was to identify genomic regions associated with 305‐day milk 
yield and lactation curve parameters on primiparous (n = 9,910) and multiparous 
(n = 11,158) Holstein cows. The SNP solutions were estimated using a weighted sin-
gle‐step genomic BLUP approach and imputed high‐density panel (777k) genotypes. 
The proportion of genetic variance explained by windows of 50 consecutive SNP 
(with an average of 165 Kb) was calculated, and regions that accounted for more 
than 0.50% of the variance were used to search for candidate genes. Estimated herit-
abilities were 0.37, 0.34, 0.17, 0.12, 0.30 and 0.19, respectively, for 305‐day milk 
yield, peak yield, peak time, ramp, scale and decay for primiparous cows. Genetic 
correlations of 305‐day milk yield with peak yield, peak time, ramp, scale and decay 
in primiparous cows were 0.99, 0.63, 0.20, 0.97 and −0.52, respectively. The results 
identified three windows on BTA14 associated with 305‐day milk yield and the pa-
rameters of lactation curve in primi‐ and multiparous cows. Previously proposed can-
didate genes for milk yield supported by this work include GRINA, CYHR1, FOXH1, 
TONSL, PPP1R16A, ARHGAP39, MAF1, OPLAH and MROH1, whereas newly 
identified candidate genes are MIR2308, ZNF7, ZNF34, SLURP1, MAFA and KIFC2 
(BTA14). The protein lipidation biological process term, which plays a key role in 
controlling protein localization and function, was identified as the most important 
term enriched by the identified genes.
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per lactation, peak yield and persistency are considered 
as among the economically most important production 
traits in dairy cows (Dekkers, Ten Hag, & Weersink, 
1998; Do et al., 2017; Tekerli, Akinci, Dogan, & Akcan, 
2000). There is a considerable variation between animals 
in terms of the shape of the lactation curve, which can 
be attributed to factors such as genetic background, par-
ity, diet, health status and other environmental factors 
(Atashi, Zamiri, & Dadpasand, 2013; Hostens, Ehrlich, 
Van Ranst, & Opsomer, 2012; Rekaya, Carabano, & Toro, 
2000; Tekerli et al., 2000). Although several linear and 
non‐linear functions with different functional forms have 
been used to describe the relationship between daily milk 
yield and days in milk (DIM) in dairy cows (Sherchand, 
McNew, Kellogg, & Johnson, 1995; Silvestre, Petim‐
Batista, & Colaco, 2006), none has achieved widespread 
acceptance outside a few specialized applications which 
are directed primarily at improving estimates of actual 
production from incomplete data sets (Ehrlich, 2011). The 
MilkBot model proposed by Ehrlich (2011) is a non‐linear 
lactation curve model in which parameter values can be 
interpreted by the effect that they have on the lactation 
curve. The MilkBot model is flexible enough to accom-
modate disease and management effect, and can provide 
more accurate estimates of dairy milk yield (Cole, Ehrlich, 
& Null, 2012).

Although genome‐wide association studies (GWAS) 
carried out within a variety of cattle breeds identified 
many genomic regions explaining variation in milk yield, 
they are mainly based on the polygenic estimated breed-
ing value (EBV), daughter yield deviation (DYD) or der-
egressed proof for accumulated 305‐day milk yield (Cole 
et al., 2011; Iso‐Touru, Sahana, Guldbrandtsen, Lund, & 
Vilkki, 2016; Jiang et al., 2010; Meredith et al., 2012; 
Nayeri et al., 2016). The accumulated 305‐day milk yield 
is estimated by summing the test‐day milk yield (TDMY) 
recorded every day during the lactation period or combin-
ing the weekly or monthly TDMY by linear interpolation 
(Schaeffer, 2016). Since the additive genetic variance for 
milk yield changes during lactation (Bignardi, El Faro, 
Cardoso, Machado, & de Albuquerque, 2009; Singh et 
al., 2016), the genetic effects of QTL related to 305‐day 
milk yield are not constant during the lactation period; 
therefore, many QTL whose genetic effects change during 
lactation might not be detected in this approach (Lund, 
Sorensen, Madsen, & Jaffrézic, 2008; Ning et al., 2018). 
Strucken, Bortfeldt, De Koning, and Brockmann (2012) 
showed that lactation curve parameters provide a higher 
power to screen the whole genome for region whose effect 
change during lactation. Therefore, the objective of this 
study was to identify genomic region(s) associated with 
305‐day milk yield and the parameters of the MilkBot lac-
tation curve model in Holstein dairy cows.

2  |   MATERIALS AND METHODS

2.1  |  Phenotypic data
Data in this study were collected as part of Work Package 
4 from the Genotype plus Environment (GplusE) FP7‐
Project (http://www.gpluse.eu). The data were records of 
21,068 lactations on primiparous (9,910) and multiparous 
(11,158) Holstein cows calving between 2010 and 2018, dis-
tributed among 118 herds in four countries (Belgium, The 
Netherlands, Great Britain and Denmark). To describe the 
lactation curve, the MilkBot model developed by Ehrlich 
(2011) was fitted on milk recording events from each animal. 
The MilkBot function is as follows:

In which, a is the scale parameter, representing the theo-
retical maximum daily yield; b is the ramp parameter, con-
trolling the rate of rise in milk production in early lactation; c 
is the offset parameter, describing the offset in time between 
parturition and the start of lactation; and d is the decay pa-
rameter, representing the rate of senescence of production 
capacity. The time at which peak lactation occurred (tpeak) 
was defined as: tpeak =−b ln

(
2db

db+1

)
+c, and peak yield was 

calculated by substitution tpeak in the MilkBot equation. The 
305‐day milk, the cumulative milk yield between calving and 
day 305 of the lactation, was calculated as:

2.2  |  Genotypic data
Individuals (n = 31,895) were genotyped using the BovineLD 
(n  =  20,462), BovineSNP50K (n  =  10,638) or BovineHD 
SNP panel (795 animals). Genotypes of animals were im-
puted to HD with a reference population of 795 (46 M and 749 
F) HD individuals using FImpute V2.2 software (Sargolzaei, 
Chesnais, & Schenkel, 2014). In total, 12,367 out of 31,895 
genotyped individuals had either phenotypic data or were in 
the pedigree file which was used in the association analysis 
(the number of animals with records was 9,910, the number 
of animals with records and with genotypes was 8,172, the 
number of animals with records and no genotypes was 1,738, 
and the number of animals with genotypes and no records was 
4,195). Quality control (QC) was performed on the imputed 
data. SNP markers with minor allele frequency (MAF) less 
than 5% were excluded. After genomic data QC, 566,345 out 
of 730,539 SNP were available for the association analysis.

yt =a

⎛
⎜⎜⎜⎝
1−

exp
�

c−t

b

�

2

⎞
⎟⎟⎟⎠

exp (−dt).

M305 = (a−a exp (−305 d))∕d+ (ab exp (c∕b)

(−1+exp (−305(1∕b+d))))∕(2+2 bd)
.

http://www.gpluse.eu
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2.3  |  Variance components estimation
Pedigree information was collected for all phenotyped ani-
mals and contained a total of 43,181 individuals (12,367 
and 9,910 out of 43,181 animals had genotype and pheno-
type data, respectively). The genetic analyses were carried 
out through the Average Information Restricted Maximum 
Likelihood (AIREML) method, using a linear single‐trait 
animal model (for measurements on the primiparous 
cows). The linear model included fixed effect of country 
and herd‐year‐season of calving, covariate effects of age at 
first calving in both linear and quadratic forms, and animal 
and residual random effects. The complete model can be 
represented as follows:

where yijk represents the response variable of animal k, µ is 
the overall mean, HYSi is the fixed effect of ith herd‐year‐
season of calving, conj is the fixed effect of jth country, b1 
and b2 are the linear and quadratic regression coefficients of 
the dependent variable on the age at first calving, agek is the 
age at first calving of kth cows, ak is the additive genetic ef-
fect, and eijk is the random residual error. The additive gene-
tyic and residual variances were obtained as follows:

where �2
a
 and �2

e
 are, respectively, total additive genetic and 

residual variances, a is the vector of direct additive genetic 
effects, e is a vector of residual effects, and H is a matrix 
that combines pedigree and genomic relationships, and its 
inverse consists on the integration of additive and genomic 
relationship matrices, A and G, respectively (Aguilar et al., 
2010):

where A is the numerator relationship matrix based on pedi-
gree for all animals; A22 is the numerator relationship matrix 
for genotyped animals; and G is the genomic relationship ma-
trix which was obtained using following function described 
by VanRaden et al. (2009).

where Z is a matrix of gene content adjusted for allele fre-
quencies (0, 1 or 2 for aa, Aa and AA, respectively); D is 
a diagonal matrix of weights for SNP variances (initially 
D  =  I); M is the number of SNP, and pi is the MAF of 
ith SNP. The H matrix was built scaling G based on A22 
considering that the average of the diagonal of G is equal 
to the average of the diagonal of A22 and, the average of 
off‐diagonal G is equal to average of off‐diagonal A22. 
Analyses were performed using AIREMLF90 (Misztal et 
al., 2002). The genetic analyses for the measurements on 
the multiparous cows were carried out using a linear sin-
gle‐trait repeatability animal model, which was the same 
as the model used for primiparous cows but here, the fixed 
effect of parity was included in the model. In addition, a 
third random effect representing the permanent effect asso-
ciated with animals having repeated records was included 
in the model. This effect, assumed to be uncorrelated with 
additive genetic effects, allowed for the partitioning of the 
environmental variance into permanent and temporary 
components.

2.4  |  Weighted single‐step genome‐wide 
association study
The analyses were performed using the weighted single‐step 
genome‐wide association study (WssGWAS) methodology 
(Wang, Misztal, Aguilar, Legarra, & Muir, 2012), consider-
ing the same linear animal model used to estimate the (co) 
variance components mentioned before. The animal effects 
were decomposed into those for genotyped (ag) and ungeno-
typed animals (an). The animal effects of genotyped animals 
are a function of the SNP effects, ag =Zu, where Z is a ma-
trix relating genotypes of each locus and u is a vector of the 
SNP marker effect. The variance of animal effects was as-
sumed as:

where D is a diagonal matrix of weights for variances of mark-
ers (D  =  I for GBLUP), �2

u
 is the genetic additive variance 

captured by each SNP marker when the weighted relationship 
matrix (G*) was built with no weight.

The SNP effects were obtained using following equation:

where λ was defined by VanRaden et al. (2009) as a normaliz-
ing constant, as described below:

yijk =�+HYSi+conj+b1(agek)+b2(agek)2+ak +eijk

var

[
a

e

]
=

[
H�2

a
0

0 I�2
e

]

H−1 =A−1+

[
0 0

0 G−1−A−1
22

]

G=
ZDZ�

∑M

i=1
2pi(1−pi)

Var (ag)=Var (Zu)=ZDZ��2
u
=G∗�2

a

û=𝜆DZ� G∗−1âg =DZ�[ZDZ�]−1âg

�=
�2

u

�2
a

=
1∑M

i=1
2pi(1−pi)
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The following iterative process described by Wang et 
al. (2012) was used to estimate the SNP effects. 1. D = I in 
the first step; 2. to calculate the G matrix; 3. to calculate 
GEBVs for the entire data set using ssGBLUP; 4. to convert 
GEBVs to SNP effects (û):û=𝜆DZ�G∗−1 âg; 5. to calculate 
the variance of each SNP:di = û2

i
2pi(1−pi), where i is the 

ith SNP; and 6. to normalize SNP weights to keep the total 
genetic variance constant; exit or loop to step 2. The effects 
of markers were obtained by three iterations from step 2 to 
6. Accuracies of GEBVs were obtained using the following 
formula:

where PEV is the prediction error variance, and �2
g
 is the ad-

ditive genetic variance of the trait. The most accurate ge-
nomic evaluation was provided at iteration 2 which was used 
for estimating the percentage of genetic variance explained 
by ith genomic region as follow:

where ai is the genetic value of the ith region that consists 
of 50 consecutive SNP, �2

a
 is the total genetic variance, Zj 

is the vector of the SNP content of the jth SNP for all indi-
viduals, and ûj is the marker effect of the jth SNP within the 

ith region. The results were presented by the proportion of 
variance explained by each window of 50 consecutive SNP 
with an average of 165 Kb.

2.5  |  Linkage disequilibrium analysis
The square of the correlation coefficient between two loci 
(r2) was used to map linkage disequilibrium (LD) using PreG 
SF90 (Aguilar, Misztal, Tsuruta, Legarra, & Wang, 2014) 
with a sliding window size of 200 Kb across the same chro-
mosome. LD blocks were overlaid with the coordinate of the 
association windows as a further annotation layer.

2.6  |  Gene prospection
In a post‐GWAS study, gene ontology (GO) enrichment 
analysis can be performed to investigate pathways and 
biological processes that are shared by candidate genes re-
lated to associated regions identified in GWAS (Verardo 
et al., 2015). In this study, the chromosome segments that 
explained more than 0.50% of the additive genetic variance 
were selected to explore and determine potential quantita-
tive trait loci (QTL). The Map Viewer tool of the bovine 
genome available at the National Center for Biotechnology 
Information (NCBI—http://www.ncbi.nlm.nih.gov) in the 
UMD3.1 bovine genome assembly and Ensembl Genome 
Browser (http://www.ensem​bl.org/index.html) was used 
for identification of genes. The list of genes inside the chro-
mosome segments that explained more than 0.50% of addi-
tive genetic variance for each trait, considered as positional 
candidate genes, was uploaded to Enrichr for GO enrich-
ment analysis (Chen et al., 2013; Kuleshov et al., 2016). 
Significantly enriched terms with at least four genes from 
the input gene list were identified based on the retrieved 
adjusted p value.

3  |   RESULTS

3.1  |  Variance components
Descriptive statistics for 305‐day milk yield and lactation 
curve parameters in both primi‐ and multiparous cows are 
presented in Table 1. Variance components, calculated using 
the AIREML method, for additive, permanent environmental 
(for multiparous cows) and residual variances are in Table 2. 
Estimated heritabilities (SD) were 0.37 (0.01), 0.34 (0.01), 0.17 
(0.01), 0.12 (0.01), 0.30 (0.01) and 0.19 (0.01), respectively, 
for 305‐day milk yield, peak yield, peak time, ramp, scale 
and decay for primiparous cows. Genetic correlations (SD) of 
305‐day milk yield with peak yield, peak time, ramp, scale and 
decay in primiparous cows were 0.99 (0.001), 0.63 (0.001), 
0.20 (0.001), 0.97 (0.001) and −0.52 (0.001), respectively. 

acc=

√
1−

PEV

�2
g

Var(ai)

𝜎2
a

×100%=
Var

�∑50

j=1
Zjûj

�

𝜎2
a

×100

T A B L E  1   Descriptive statistics for 305‐day milk yield and 
lactation curve parametersa

Trait

Primiparous Multiparous

Mean (SD) Mean (SD)

305‐day milk (kg) 8,286 (1,471) 9,966 (1990)

Ramp 30.60 (0.24) 23.27 (2.62)

Scale (kg/day) 35.57 (6.03) 49.79 (9.76)

Decayb 1.42 (0.40) 2.59 (0.68)

Peak time (day) 72.66 (10.48) 46.91 (8.03)

Peak yield (kg/day) 30.67 (5.26) 41.28 (7.93)
aCalculated using the following model (MilkBot model): 

yt =a

(
1−

exp
(

c−t

b

)

2

)
exp (−dt), in this function, a is the scale parameter, 

representing the theoretical maximum daily yield; b is the ramp parameter, 
controlling the rate of rise in milk production in early lactation; c is the offset 
parameter, describing the offset in time between parturition and the start of 
lactation; and d is the decay parameter, representing the rate of senescence of 
production capacity. The time at which peak lactation occurred (tpeak) was 
defined as: tpeak =−b ln

(
2db

db+1

)
+c, and peak milk production was calculated by 

substitution the tpeak in the MilkBot equation. 
bThe decay × 1,000. 

http://www.ncbi.nlm.nih.gov
http://www.ensembl.org/index.html
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Estimated heritabilities (SD) were 0.26 (0.02), 0.23 (0.02), 
0.13 (0.02), 0.05 (0.02), 0.21 (0.02) and 0.20 (0.02), respec-
tively, for 305‐day milk yield, peak yield, peak time, ramp, 
scale and decay for multiparous cows. Corresponding values 
for repeatability estimates were 0.42 (0.01), 0.34 (0.01), 0.15 
(0.01), 0.05 (0.01), 0.29 (0.01) and 0.24 (0.01). Genetic cor-
relations of 305‐day milk yield with peak yield, peak time, 
ramp, scale and decay for multiparous cows were 0.95 (0.005), 
0.52 (0.005), 0.15 (0.005), 0.89 (0.005) and −0.49 (0.005), 
respectively.

3.2  |  Genome‐wide association study

3.2.1  |  Primiparous cows
General information about the results of ssGWAS for primip-
arous cows is described in Data S1‐S6. The windows associ-
ated with 305‐day milk yield and lactation curve parameters 
in primiparous cows along with the genes inside them are 
presented in Table 3. The results identified three windows 
associated with the 305‐day milk yield or the parameters of 

T A B L E  2   Variance components for 305‐ milk yield and lactation curve parametersa

Trait

Primiparous Multiparous

�
2
a
(SE) �

2
e
(SE) �

2
a
(SE) �

2
p
(SE) �

2
e
(SE)

305‐day milk 
(kg)

526,630 (32,046) 892,670 (21,683) 685,000 (57,726) 414,700 (49,863) 1,498,600 (34,048)

Scale (kg/day) 7.58 (0.52) 17.19 (0.39) 12.42 (1.19) 4.85 (1.11) 42.92 (0.93)

Ramp 0.0056 (0.00071) 0.0408 (0.00080) 0.3021 (0.06775) 0.0145 (0.08288) 5.6433 (0.1010)

Decayb 0.02228 (0.002076) 0.09256 (0.001944) 0.07120 (0.006737) 0.01143 (0.006347) 0.27119 (0.005747)

Peak time (day) 14.39 (1.43) 69.86 (1.43) 7.04 (0.86) 1.43 (0.94) 46.08 (0.94)

Peak yield (kg/
day)

6.36 (0.40) 11.99 (0.28) 9.08 (0.83) 4.58 (0.75) 26.23 (0.58)

aCalculated using the following model (MilkBot model): yt =a

(
1−

exp
(

c−t

b

)

2

)
exp (−dt), in this function, a is the scale parameter, representing the theoretical 

maximum daily yield; b is the ramp parameter, controlling the rate of rise in milk production in early lactation; c is the offset parameter, describing the offset in time 

between parturition and the start of lactation; and d is the decay parameter, representing the rate of senescence of production capacity. The time at which peak lactation 

occurred (tpeak) was defined as: tpeak =−b ln
(

2db

db+1

)
+c, and peak milk production was calculated by substitution tpeak in the MilkBot equation. 

bThe decay × 1,000. 

T A B L E  3   Identification of genes based on additive genetic variance explained by windows of 50 adjacent SNP for 305‐day milk yield and 
lactation curve parametersa in primiparous cows

Chromosome Position (bp) Genesb Trait (% variance explained)

BTA14 1480260–1683767 MIR2308, LOC104973955, CYHR1, FOXH1, COMMD5, 
TONSL, PPP1R16A, MFSD3, LRRC24, C14H8orf33, 
RECQL4, ARHGAP39, RPL8, GPT, LRRC14, ZNF34, 
C14H8orf82, ZNF7, KIFC2

305‐day milk (1.21), peak yield (1.04), 
peak time (0.47), ramp (0.37), scale 
(0.81), decay (0.57)

BTA14 1855090–2118405 LOC100141215, MIR2309, MIR1839, LOC101907640, 
LOC101908059, LOC104968841, LOC104973958, 
LOC104973959, LOC104973960, LOC104973961, 
OPLAH, HGH1, LOC509114, GRINA, PARP10, MAF1, 
SHARPIN, CYC1, GPAA1, MROH1, LOC523023, 
EXOSC4, SPATC1, LOC786966

305‐day milk (1.09), peak yield (0.94), 
peak time (0.38), ramp (0.28), scale 
(0.73), decay (0.44)

BTA14 2676321–2940147 PSCA, LY6K, LOC100848939, LOC101904969, 
LOC101905222, LOC104973965, LOC104973966, 
THEM6, LYNX1, JRK, ARC, SLURP1, LY6D, GML, 
LOC787628, LYPD2

305‐day milk (0.94), peak yield (0.82), 
peak time (0.55), ramp (0.37), scale 
(0.64), decay (0.50)

aCalculated using the following model (MilkBot model): yt =a

(
1−

exp
(

c−t

b

)

2

)
exp (−dt), in this function, a is the scale parameter, representing the theoretical 

maximum daily yield; b is the ramp parameter, controlling the rate of rise in milk production in early lactation; c is the offset parameter, describing the offset in time 
between parturition and the start of lactation; and d is the decay parameter, representing the rate of senescence of production capacity. The time at which peak lactation 
occurred (tpeak) was defined as: tpeak =−b ln

(
2db

db+1

)
+c, and peak milk production was calculated by substitution tpeak in the MilkBot equation. 

bOfficial gene symbol (assembly UMD_3.1, annotation release 103). 
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the lactation curve in primiparous cows (Table 3; Figure 1). 
These three regions combined explained more than 3.24%, 
2.80%, 1.40%, 2.18% and 1.51% of the total genetic variances 
of 305‐day milk yield, peak yield, peak time, scale and decay 

parameter of the lactation curve, respectively. However, no 
window was found to explain more than 0.50% of additive 
genetic variance of ramp. A region was found on BTA14 po-
sition 2.67–2.94 Mb which was associated with 305‐day milk 

F I G U R E  1   Additive genetic variance explained by windows of 50 adjacent SNP across chromosomes for 305‐day milk yield (a), peak yield 
(b), peak time (c), ramp (d), scale (e) and decay (f) in primiparous cows

T A B L E  4   Identification of genes based on additive genetic variance explained by windows of 50 adjacent SNP for 305‐day milk yield and 
lactation curve parametersa in multiparous cows

Chromosome Position (bp) Genesb
Trait (% variance 
explained)

BTA14 1480260–1683767 MIR2308, LOC104973955, CYHR1, FOXH1, COMMD5, 
TONSL, PPP1R16A, MFSD3, LRRC24, C14H8orf33, 
RECQL4, ARHGAP39, RPL8, GPT, LRRC14, ZNF34, 
C14H8orf82, ZNF7, KIFC2

305‐day milk (1.10), peak 
yield (0.89), peak time 
(0.25), scale (0.71), decay 
(0.32)

BTA14 1855090–2118405 LOC100141215, MIR2309, MIR1839, LOC101907640, 
LOC101908059, LOC104968841, LOC104973958, 
LOC104973959, LOC104973960, SPATC1, LOC786966, 
LOC104973961, OPLAH, HGH1, LOC509114, GRINA, 
PARP10, MAF1, SHARPIN, CYC1, GPAA1, MROH1, 
LOC523023, EXOSC4

305‐day milk (0.88), peak 
yield (0.69), peak time 
(0.20), scale (0.56), decay 
(0.22)

BTA14 2676321–2940147 PSCA, LY6K, LOC100848939, LOC101904969, 
LOC101905222, JRK, LYPD2, LOC104973965, 
LOC104973966, THEM6, LYNX1, ARC, SLURP1, LY6D, 
GML, LOC78762

305‐day milk (0.79), peak 
yield (0.60), peak time 
(0.36),, scale (0.48), decay 
(0.36)

aCalculated using the following model (MilkBot model): yt =a

(
1−

exp
(

c−t

b

)

2

)
exp (−dt) , in this function, a is the scale parameter, representing the theoretical 

maximum daily yield; b is the ramp parameter, controlling the rate of rise in milk production in early lactation; c is the offset parameter, describing the offset in time 
between parturition and the start of lactation; and d is the decay parameter, representing the rate of senescence of production capacity. The time at which peak lactation 
occurred (tpeak) was defined as:tpeak =−b ln

(
2db

db+1

)
+c, and peak milk production was calculated by substitution tpeak in the MilkBot equation. 

bOfficial gene symbol (assembly UMD_3.1, annotation release 103). 
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yield, peak yield, peak time, scale and decay parameter of 
the lactation curve. A window was found on BTA14 in posi-
tion 1.48–1.68 Mb which explained more than 1.21%, 1.04%, 
0.81% and 0.57% of additive genetic variances of 305‐day 
milk yield, peak yield, scale and decay, respectively. A re-
gion on BTA14 in position 1.85–2.11 Mb was identified to 
be associated with 305‐day milk yield, peak yield and scale. 
A total of 59 genes were found to be associated with 305‐
day milk yield and lactation curve parameters in primiparous 
cows.

3.2.2  |  Multiparous cows
General information about all results of ssGWAS for mul-
tiparous cows is described in Data S7–S12. The windows 
associated with 305‐day milk yield and lactation curve pa-
rameters in multiparous cows along with the genes inside 
them are presented in Table 4. The results identified three 
windows associated with 305‐day milk yield and the param-
eters of lactation curve in multiparous cows (Table 4; Figure 
2). The identified windows were quiet similar to those iden-
tified for primiparous cows. These three regions combined 
explained more than 2.69%, 2.18%, 0.86%, 1.75% and 0.90% 
of the total genetic variances of 305‐day milk yield, peak 
yield, peak time, scale and decay, respectively. However, no 
window was found to explain more than 0.50% of additive 
genetic variance of the peak time, decay or ramp in multipa-
rous cows.

3.2.3  |  Linkage disequilibrium (LD) analysis
In total, four LD blocks consisting of 15, 5, 3 and 3 SNP 
were found in the region identified on BTA14 position 
1.48–1.68  Mb (Figure 3), while the biggest block (across 
a 37  Kb region) contains genes including ZNF7, ZNF34, 
RPL8, COMMD5 and C14H8orf33. Three LD blocks con-
sisted of 7, 6 and 4 SNP were found in the identified region 
on BTA14 position 1.85–2.11  Mb, while the biggest LD 
block contains genes including MIR2309 and LOC786966. 
The biggest LD block found in the window identified on 
BTA14 in position 2.67–2.94  Mb, consisted of nine SNP 
and contains genes including LOC101905222, JRK and 
ARC (results not shown).

3.2.4  |  Gene ontology enrichment analysis
Significantly enriched biological processes with at least 
four genes from the input gene list are shown in Table 5. 
The C‐terminal protein lipidation (GO: 0006501), C‐terminal 
protein amino acid modification (GO: 0018410) and protein 
lipidation (GO: 0006497) were identified as the enriched 
biological processes. The protein lipidation, the covalent at-
tachment of lipid groups to an amino acid in a protein, and 
C‐terminal protein amino acid modification, the alteration of 
the C‐terminal amino acid residue in a protein, are child terms 
of the C‐terminal protein lipidation, the covalent attachment 
of a lipid group to the carboxy‐terminus of a protein.

F I G U R E  2   Additive genetic variance explained by windows of 50 adjacent SNP across chromosomes for 305‐day milk yield (a), peak yield 
(b), peak time (c), ramp (d), scale (e) and decay (f) in multiparous cows
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4  |   DISCUSSION

The heritability of 305‐day milk yield was 0.37 and 
0.26, respectively, in primiparous and multiparous cows. 
The heritability for lactation curve parameters in pri-
miparous cows ranged from 0.12 (ramp) to 0.34 (peak 
yield). The corresponding values in multiparous cows 
were 0.05–0.23, respectively, for ramp and peak yield. 
Previous researchers have reported that peak yield is more 
heritable compared with other parameters of the lacta-
tion curve (Gebreyohannes, Koonawootrittriron, Elzo, & 

Suwanasopee, 2013; Saghanezhad, Atashi, Dadpasand, 
Zamiri, & Shokri‐Sangari, 2017; Shanks, Berger, Freeman, 
& Dickinson, 1981). Genetic correlations of 305‐day milk 
yield with lactation curve parameters ranged from −0.52 
(decay) to 0.99 (peak yield). The corresponding values 
in multiparous cows were −0.49 to 0.95, respectively, 
for decay and peak yield. The higher correlation between 
305‐day milk yield and peak yield compared to decay, as 
an indicator for lactation persistency, indicates that peak 
yield is more important in determining the lactation yield 
than persistency and can be used as a management tool to 

F I G U R E  3   Linkage disequilibrium between 30 SNP inside the genomic region on BTA14 in position 1.48–1.68 associated with 
305‐day milk and lactation curve parameters in both primiparous and multiparous cows. The colour scale ranges from red to white (colour 
intensity decreases with decreasing r2 value). Strong LD was detected across a 37 kb region between SNP BovineHD1400000167 and 
BovineHD1400000167. This region contains genes including ZNF7, ZNF34, RPL8, COMMD5 and C14H8orf33

Trait GO term description Genes

305‐day milk, Scale, peak yield, 
peak time, ramp

C‐terminal protein lipi-
dation (GO:0006501)

LY6H, LY6K, LY6D, 
LYPD2, PSCA, GPIHBP1

305‐day milk, scale, peak yield, 
peak time, ramp

C‐terminal protein 
amino acid modifica-
tion (GO:0018410)

LY6H, LY6K, LY6D, 
LYPD2, PSCA, GPIHBP1

305‐day milk, scale, peak yield, 
peak time, ramp

protein lipidation 
(GO:0006497)

LY6H, LY6K, LY6D, 
LYPD2, PSCA, GPIHBP1

T A B L E  5   Gene ontologies (GO) 
terms enriched by the genes inside the 
chromosomal region of associated with milk 
production and lactation curve parameters
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monitor milk production performance of the herd (Ali & 
Schaeffer, 1987; Atashi, Zamiri, & Sayyadnejad, 2012; 
Gebreyohannes et al., 2013; Tekerli et al., 2000).

In this study, the weighted single‐step genomic BLUP 
(WssGWAS) approach described by Wang et al. (2012) was 
used to identify genomic region(s) associated with 305‐day 
milk yield and lactation curve parameters in Holstein dairy 
cows. The WssGWAS approach integrates all phenotypic, 
genotypic and pedigree data simultaneously; therefore, 
there is no need to calculate pseudo‐phenotypes. In addi-
tion, this approach allows the use of different weights for 
SNP according to their importance, which is a deviation 
from the non‐realistic GBLUP assumption of the infinitesi-
mal model and improves the precision of estimates of SNP 
effects. In this procedure, the H−1 matrix, calculated by 
combining all known pedigree and genotype information, 
is used in the ssGBLUP to estimate genomic estimated 
breeding values (GEBV) for all animals. Then, the GEBVs 
of the genotyped animals are used to estimate effects for 
the SNP. Finally, SNP effects are used to calculate the per-
centage of genetic variance explained by sets of consecu-
tive SNP (SNP windows). In this study, the proportion of 
additive genetic variance explained by windows of 50‐ad-
jacent SNP was calculated and the regions that accounted 
for more than 0.50% of the additive genetic variance were 
identified as potential QTL. The present study, identified 
three windows on BTA14 (in position 1.48–1.68, 1.85–2.11 
and 2.67–2.94 Mb, respectively) in both primi‐ and multip-
arous cows associated with 305‐day milk yield or lactation 
curve parameters. The identified regions overlap with QTL 
regions for multiple traits including milk yield and milk 
composition, somatic cell count, calving ease and average 
daily gain in cattle (Bennewitz et al., 2003; Boichard et al., 
2003; Buitenhuis et al., 2014; Iso‐Touru et al., 2016; Jiang 
et al., 2010; Lund et al., 2008; Nayeri et al., 2016; Rupp 
& Boichard, 2003). Iso‐Touru et al. (2016) identified 755 
SNP in six different chromosomes (BTA5, BTA14, BTA16, 
BTA19, BTA20 and BTA25) associated with milk yield in 
Nordic Red cattle with the highest number of significant 
SNP on BTA14. Nayeri et al. (2016) using a single SNP 
regression mixed linear model, identified 292 SNP associ-
ated with milk yield in Canadian Holsteins, with the high-
est number of significant SNP on BTA14. Meredith et al. 
(2012), using a single SNP regression approach, identified 
370 SNP associated with milk yield in Irish Holsteins with 
the highest number of significant SNP on BTA14.

A region on BTA14 in position 1.85–2.11 Mb was identi-
fied to be associated with 305‐day milk yield, peak yield and 
scale in both primi‐ and multiparous cows. This region con-
tains several genes including MIR2309, MIR1839, OPLAH, 
HGH1, GRINA, PARP10, MAF1, SHARPIN, CYC1, GPAA1, 
MROH1, EXOSC4 and SPATC1. The association of genes 
including OPLAH, GRINA and MF1 with milk yield and 

lactation performance has been reported in previous studies 
(Kolbehdari et al., 2009; Nayeri & Stothard, 2016; Wang, 
Ning, Liu, Zhang, & Jiang, 2019); however, the association 
of the remaining identified genes inside this region with 
lactation performance in dairy cows has not been reported 
previously.

A region on BTA14 in position 1.48–1.68 Mb was iden-
tified to be associated with 305‐day milk yield, peak yield, 
scale and decay in primiparous cows. This region was also 
associated with 305‐day milk yield, peak yield and the scale 
in multiparous cows. Previous studies have reported this re-
gion to be associated with milk fat yield and milk protein 
percentage (Bagnato et al., 2008; Rodriguez‐Zas, Southey, 
Heyen, & Lewin, 2002). This region contains several genes 
including MIR2308, CYHR1, FOXH1, COMMD5, TONSL, 
PPP1R16A, MFSD3, LRRC24, C14H8orf33, RECQL4, 
ARHGAP39, RPL8, GPT, LRRC14, ZNF34, C14H8orf82, 
ZNF7 and KIFC2. The association of genes including 
TONSL, PPP1R16A, FOXH1, ARHGAP39, CYHR1 and 
ARHGAP39 with milk yield and milk composition has been 
reported in previous studies (Buitenhuis et al., 2014; Nayeri 
& Stothard, 2016; Ning et al., 2017; Wang et al., 2019). 
Nayeri et al. (2016) reported that highly significant SNP for 
milk yield in Canadian Holsteins were mapped inside genes 
including CPSF1, DGAT1, TONSL, CYHR1, FOXH1 and 
PPP1R16A.

It is documented that cows which reach peak production 
later, produce more 305‐day milk, more milk at peak, and 
show a higher milk yield persistency (Saghanezhad et al., 
2017). The only windows associated with 305‐day milk yield, 
peak yield, peak time and decay was identified on BTA14 
in position 2.67–2.94 Mb. This region which contains sev-
eral genes, including PSCA, LY6K, THEM6, LYNX1, JRK, 
ARC, SLURP1, LY6D, GML and LYPD2, was also associated 
with 305‐day milk yield and peak yield in multiparous cows. 
Buitenhuis et al. (2014) reported that the GML is associated 
with milk fat and protein percentage; however, the associa-
tion of the remaining identified genes inside this region with 
lactation performance in dairy cows has not been reported 
before.

The decay parameter represents the rate of decline in milk 
production after peak and can be considered as a measure for 
lactation persistency. The genomic regions explaining varia-
tion in lactation persistency have been investigated in several 
GWAS (Kolbehdari et al., 2008; Nayeri et al., 2017). Nayeri 
et al. (2017) identified 83 SNP in four different chromosomes 
(BTA6, BTA13, BTA20 and BTA27) to be associated with 
lactation persistency (defined as the average of expected milk 
yield at day 280 in lactation compared with that at day 60 in 
lactation) in Canadian Holsteins with the highest number of 
significant SNP on BTA20. Do et al. (2017) reported eight 
SNP on BTA2, 5, 9, 14, 19 and 20 to be associated with lacta-
tion persistency in Canadian Holsteins. However, the present 
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study identified two regions (BTA14 position 1.48–1.68 Mb 
and 2.67–2.94 Mb) associated with decay parameter which 
has not been previously reported to be associated with lacta-
tion persistency in dairy cattle.

The square of the correlation coefficient between two 
loci (r2) was used to map LD in the identified windows. 
In total, four LD blocks were found in the region identi-
fied on BTA14 in position 1.48–1.68 Mb. These strong LD 
blocks reflect the strong selection pressure towards allele 
fixation that has been carried out in this part of the bovine 
genome (Khatkar et al., 2008; McKay et al., 2007). The 
C‐terminal protein lipidation (GO: 0006501), C‐terminal 
protein amino acid modification (GO: 0018410) and pro-
tein lipidation (GO: 0006497) were identified as the en-
riched biological process terms. The protein lipidation, the 
covalent attachment of lipid groups to an amino acid in a 
protein, and C‐terminal protein amino acid modification, 
the alteration of the C‐terminal amino acid residue in a pro-
tein, are child terms of the C‐terminal protein lipidation, 
the covalent attachment of a lipid group to the carboxy‐ter-
minus of a protein. Protein lipidation is an important co‐ 
or post‐translational modification which occurs in many 
proteins in eukaryotic cells and regulates numerous bio-
logical pathways such as membrane trafficking, protein se-
cretion, signal transduction and apoptosis (Chen, Sun, Niu, 
Jarugumilli, & Wu, 2018; Jiang et al., 2018). Protein lipi-
dation is essential for binding and partitioning in different 
membrane microdomains, and for the interaction with ef-
fectors and the regulation of signalling processes, thereby 
playing a key role in controlling protein localization and 
function (Triola, 2011).

5  |   CONCLUSION

The objective of this study was to identify genomic regions 
associated with milk yield and the shape of lactation curve 
in Holstein dairy cows. The lactation curve parameters, the 
slope of the initial rise of the curve, peak yield, time to peak 
and the slope of the curve after peak yield were used as new 
phenotypic variables in the GWAS. Among the parameters 
of lactation curve, scale and peak yield showed the highest 
heritability and the highest genetic correlation with 305‐day 
milk yield which can explain the overlapping regions among 
these traits. The genomic regions were found to be associ-
ated with 305‐day milk yield, scale and peak yield in both 
primi‐ and multiparous cows. Although during the last decade 
many animals have been genotyped using high‐density SNP 
chip panels, no significant impact has been observed on ge-
netic improvement programme (Erbe et al., 2012; VanRaden 
et al., 2013). However, Abo‐Ismail et al. (2017) reported that 
combining the significant SNPs or SNPs within or nearby 
gene(s) from the HD panel with the BovineSNP50 panel 

yielded a marginal increase in the accuracy of prediction of 
genomic estimated breeding values compared to the use of the 
BovineSNP50 panel alone.
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