1,555 research outputs found

    Risk factors for high anti-HHV-8 antibody titers (≄1:51,200) in black, HIV-1 negative South African cancer patients: a case control study

    Get PDF
    Background: Infection with human herpesvirus 8 (HHV-8) is the necessary causal agent in the development of Kaposi's sarcoma (KS). Infection with HIV-1, male gender and older age all increase risk for KS. However, the geographic distribution of HHV-8 and KS both prior to the HIV/AIDS epidemic and with HIV/AIDS suggest the presence of an additional co-factor in the development of KS. Methods: Between January 1994 and October 1997, we interviewed 2576 black in-patients with cancer in Johannesburg and Soweto, South Africa. Blood was tested for antibodies against HIV-1 and HHV-8 and the study was restricted to 2191 HIV-1 negative patients. Antibodies against the latent nuclear antigen of HHV-8 encoded by orf73 were detected with an indirect immunofluorescence assay. We examined the relationship between high anti-HHV-8 antibody titers (≄1:51,200) and sociodemographic and behavioral factors using unconditional logistic regression models. Variables that were significant at p = 0.10 were included in multivariate analysis. Results: Of the 2191 HIV-1 negative patients who did not have Kaposi's sarcoma, 854 (39.0%) were positive for antibodies against HHV-8 according to the immunofluorescent assay. Among those seropositive for HHV-8, 530 (62.1%) had low titers (1:200), 227 (26.6%) had medium titers (1:51,200) and 97 (11.4%) had highest titers (1:204,800). Among the 2191 HIV-1 negative patients, the prevalence of high anti-HHV-8 antibody titers (≄1:51,200) was independently associated with increasing age (ptrend = 0.04), having a marital status of separated or divorced (p = 0.003), using wood, coal or charcoal as fuel for cooking 20 years ago instead of electricity (p = 0.02) and consuming traditional maize beer more than one time a week (p = 0.02; p-trend for increasing consumption = 0.05) although this may be due to chance given the large number of predictors considered in this analysis. Conclusions: Among HIV-negative subjects, patients with high anti-HHV-8 antibody titers are characterized by older age. Other associations that may be factors in the development of high anti- HHV-8 titers include exposure to poverty or a low socioeconomic status environment and consumption of traditional maize beer. The relationship between these variables and high anti- HHV-8 titers requires further, prospective study

    Psychological determinants of whole-body endurance performance

    Get PDF
    Background: No literature reviews have systematically identified and evaluated research on the psychological determinants of endurance performance, and sport psychology performance-enhancement guidelines for endurance sports are not founded on a systematic appraisal of endurance-specific research. Objective: A systematic literature review was conducted to identify practical psychological interventions that improve endurance performance and to identify additional psychological factors that affect endurance performance. Additional objectives were to evaluate the research practices of included studies, to suggest theoretical and applied implications, and to guide future research. Methods: Electronic databases, forward-citation searches, and manual searches of reference lists were used to locate relevant studies. Peer-reviewed studies were included when they chose an experimental or quasi-experimental research design, a psychological manipulation, endurance performance as the dependent variable, and athletes or physically-active, healthy adults as participants. Results: Consistent support was found for using imagery, self-talk, and goal setting to improve endurance performance, but it is unclear whether learning multiple psychological skills is more beneficial than learning one psychological skill. The results also demonstrated that mental fatigue undermines endurance performance, and verbal encouragement and head-to-head competition can have a beneficial effect. Interventions that influenced perception of effort consistently affected endurance performance. Conclusions: Psychological skills training could benefit an endurance athlete. Researchers are encouraged to compare different practical psychological interventions, to examine the effects of these interventions for athletes in competition, and to include a placebo control condition or an alternative control treatment. Researchers are also encouraged to explore additional psychological factors that could have a negative effect on endurance performance. Future research should include psychological mediating variables and moderating variables. Implications for theoretical explanations of endurance performance and evidence-based practice are described

    A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    Get PDF
    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission

    Cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study

    Get PDF
    Abstract Introduction Cyclophosphamide-based adjuvant chemotherapy is a mainstay of treatment for women with node-positive breast cancer, but is not universally effective in preventing recurrence. Pharmacogenetic variability in drug metabolism is one possible mechanism of treatment failure. We hypothesize that functional single nucleotide polymorphisms (SNPs) in drug metabolizing enzymes (DMEs) that activate (CYPs) or metabolize (GSTs) cyclophosphamide account for some of the observed variability in disease outcomes. Methods We performed a retrospective cohort study of 350 women enrolled in a multicenter, randomized, adjuvant breast cancer chemotherapy trial (ECOG-2190/INT-0121). Subjects in this trial received standard-dose cyclophosphamide, doxorubicin and fluorouracil (CAF), followed by either observation or high-dose cyclophosphamide and thiotepa with stem cell rescue. We used bone marrow stem cell-derived genomic DNA from archival specimens to genotype CYP2B6, CYP2C9, CYP2D6, CYP3A4, CYP3A5, GSTM1, GSTT1, and GSTP1. Cox regression models were computed to determine associations between genotypes (individually or in combination) and disease-free survival (DFS) or overall survival (OS), adjusting for confounding clinical variables. Results In the full multivariable analysis, women with at least one CYP3A4 *1B variant allele had significantly worse DFS than those who were wild-type *1A/*1A (multivariate hazard ratio 2.79; 95% CI 1.52, 5.14). CYP2D6 genotype did not impact this association among patients with estrogen receptor (ER) -positive tumors scheduled to receive tamoxifen. Conclusions These data support the hypothesis that genetic variability in cyclophosphamide metabolism independently impacts outcome from adjuvant chemotherapy for breast cancer

    Bioelectrical signals and ion channels in the modeling of multicellular patterns and cancer biophysics

    Get PDF
    Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level

    Re-analysis of the larval testis data on meiotic sex chromosome inactivation revealed evidence for tissue-specific gene expression related to the drosophila X chromosome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meiotic sex chromosome inactivation (MSCI) during spermatogenesis has been proposed as one of the evolutionary driving forces behind both the under-representation of male-biased genes on, and the gene movement out of, the X chromosome in <it>Drosophila</it>. However, the relevance of MSCI in shaping sex chromosome evolution is controversial. Here we examine two aspects of a recent study on testis gene expression (Mikhaylova and Nurminsky, <it>BMC Biol </it>2011, <b>9:</b>29) that failed to support the MSCI in <it>Drosophila</it>. First, Mikhaylova and Nurminsky found no differences between X-linked and autosomal genes based on the transcriptional profiling of the early testis development, and thus concluded that MSCI does not occur in <it>D. melanogaster</it>. Second, they also analyzed expression data from several <it>D. melanogaster </it>tissues and concluded that under-representation on the X chromosome is not an exclusive property of testis-biased genes, but instead, a general property of tissue-specific genes.</p> <p>Results</p> <p>By re-analyzing the Mikhaylova and Nurminsky's testis data and the expression data on several <it>D. melanogaster </it>tissues, we made two major findings that refuted their original claims. First, the developmental testis data has generally greater experimental error than conventional analyses, which reduced significantly the power to detect chromosomal differences in expression. Nevertheless, our re-analysis observed significantly lower expression of the X chromosome in the genomic transcriptomes of later development stages of the testis, which is consistent with the MSCI hypothesis. Second, tissue-specific genes are also in general enriched with genes more expressed in testes than in ovaries, that is testis-biased genes. By completely excluding from the analyses the testis-biased genes, which are known to be under-represented in the X, we found that all the other tissue-specific genes are randomly distributed between the X chromosome and the autosomes.</p> <p>Conclusions</p> <p>Our findings negate the original study of Mikhaylova and Nurminsky, which concluded a lack of MSCI and generalized the pattern of paucity in the X chromosome for tissue-specific genes in <it>Drosophila</it>. Therefore, MSCI and other selection-based models such as sexual antagonism, dosage compensation, and meiotic-drive continue to be viable models as driving forces shaping the genomic distribution of male-related genes in <it>Drosophila</it>.</p

    Present Limits to Heat-Adaptability in Corals and Population-Level Responses to Climate Extremes

    Get PDF
    Climate change scenarios suggest an increase in tropical ocean temperature by 1–3°C by 2099, potentially killing many coral reefs. But Arabian/Persian Gulf corals already exist in this future thermal environment predicted for most tropical reefs and survived severe bleaching in 2010, one of the hottest years on record. Exposure to 33–35°C was on average twice as long as in non-bleaching years. Gulf corals bleached after exposure to temperatures above 34°C for a total of 8 weeks of which 3 weeks were above 35°C. This is more heat than any other corals can survive, providing an insight into the present limits of holobiont adaptation. We show that average temperatures as well as heat-waves in the Gulf have been increasing, that coral population levels will fluctuate strongly, and reef-building capability will be compromised. This, in combination with ocean acidification and significant local threats posed by rampant coastal development puts even these most heat-adapted corals at risk. WWF considers the Gulf ecoregion as “critically endangered”. We argue here that Gulf corals should be considered for assisted migration to the tropical Indo-Pacific. This would have the double benefit of avoiding local extinction of the world's most heat-adapted holobionts while at the same time introducing their genetic information to populations naĂŻve to such extremes, potentially assisting their survival. Thus, the heat-adaptation acquired by Gulf corals over 6 k, could benefit tropical Indo-Pacific corals who have <100 y until they will experience a similarly harsh climate. Population models suggest that the heat-adapted corals could become dominant on tropical reefs within ∌20 years
    • 

    corecore