313 research outputs found

    A sensitive survey for 13CO, CN, H2CO and SO in the disks of T Tauri and Herbig Ae stars

    Full text link
    We use the IRAM 30-m telescope to perform a sensitive search for CN N=2-1 in 42 T Tauri or Herbig Ae systems located mostly in the Taurus-Auriga region. 13^{13}CO J=2-1 is observed simultaneously to indicate the level of confusion with the surrounding molecular cloud. The bandpass also contains two transitions of ortho-H2_2CO, one of SO and the C17^{17}O J=2-1 line which provide complementary information on the nature of the emission. While 13^{13}CO is in general dominated by residual emission from the cloud, CN exhibits a high disk detection rate >50> 50% in our sample. We even report CN detection in stars for which interferometric searches failed to detect 12^{12}CO, presumably because of obscuration by a foreground, optically thick, cloud. Comparison between CN and o-H2_2CO or SO line profiles and intensities divide the sample in two main categories. Sources with SO emission are bright and have strong H2_2CO emission, leading in general to [H2_2CO/CN]>0.5 > 0.5. Furthermore, their line profiles, combined with a priori information on the objects, suggest that the emission is coming from outflows or envelopes rather than from a circumstellar disk. On the other hand, most sources have [H2_2CO/CN]<0.3 < 0.3, no SO emission, and some of them exhibit clear double-peaked profiles characteristics of rotating disks. In this second category, CN is likely tracing the proto-planetary disks. From the line flux and opacity derived from the hyperfine ratios, we constrain the outer radii of the disks, which range from 300 to 600 AU. The overall gas disk detection rate (including all molecular tracers) is 68\sim 68%, and decreases for fainter continuum sources. This study shows that gas disks, like dust disks, are ubiquitous around young PMS stars in regions of isolated star formation, and that a large fraction of them have R>300R > 300 AU.Comment: 31 pages (including 59 figures

    Sensitive survey for 13CO, CN, H2CO, and SO in the disks of T Tauri and Herbig Ae stars II: Stars in ρ\rho Oph and upper Scorpius

    Full text link
    We attempt to determine the molecular composition of disks around young low-mass stars in the ρ\rho Oph region and to compare our results with a similar study performed in the Taurus-Auriga region. We used the IRAM 30 m telescope to perform a sensitive search for CN N=2-1 in 29 T Tauri stars located in the ρ\rho Oph and upper Scorpius regions. 13^{13}CO J=2-1 is observed simultaneously to provide an indication of the level of confusion with the surrounding molecular cloud. The bandpass also contains two transitions of ortho-H2_2CO, one of SO, and the C17^{17}O J=2-1 line, which provides complementary information on the nature of the emission. Contamination by molecular cloud in 13^{13}CO and even C17^{17}O is ubiquitous. The CN detection rate appears to be lower than for the Taurus region, with only four sources being detected (three are attributable to disks). H2_2CO emission is found more frequently, but appears in general to be due to the surrounding cloud. The weaker emission than in Taurus may suggest that the average disk size in the ρ\rho Oph region is smaller than in the Taurus cloud. Chemical modeling shows that the somewhat higher expected disk temperatures in ρ\rho Oph play a direct role in decreasing the CN abundance. Warmer dust temperatures contribute to convert CN into less volatile forms. In such a young region, CN is no longer a simple, sensitive tracer of disks, and observations with other tracers and at high enough resolution with ALMA are required to probe the gas disk population.Comment: 18 pages, 5 figures, accepted for publication in A&

    Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk

    Full text link
    We present sub-arcsecond images of AB Auriga obtained with the IRAM Plateau de Bure interferometer in the isotopologues of CO, and in continuum at 3 and 1.3 mm. Instead of being centrally peaked, the continuum emission is dominated by a bright, asymmetric (spiral-like) feature at about 140 AU from the central star. The large scale molecular structure suggests the AB Aur disk is inclined between 23 and 43 degrees, but the strong asymmetry of the continuum and molecular emission prevents an accurate determination of the inclination of the inner parts. We find significant non-Keplerian motion, with a best fit exponent for the rotation velocity law of 0.41 +/- 0.01, but no evidence for radial motions. The disk has an inner hole about 70 AU in radius. The disk is warm and shows no evidence of depletion of CO. The dust properties suggest the dust is less evolved than in typical T Tauri disks. Both the spiral-like feature and the departure from purely Keplerian motions indicates the AB Aur disk is not in quasi-equilibrium. Disk self-gravity is insufficient to create the perturbation. This behavior may be related either to an early phase of star formation in which the Keplerian regime is not yet fully established and/or to a disturbance of yet unknown origin. An alternate, but unproven, possibility is that of a low mass companion located about 40 AU from AB Aur.Comment: 10 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    CID: Chemistry In Disks VII. First detection of HC3N in protoplanetary disks

    Full text link
    Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the enhanced capabilities of the IRAM 30m telescope by using the new broad band correlator (FTS) to search for so far undetected molecules in the protoplanetary disks surrounding the TTauri stars DM Tau, GO Tau, LkCa 15 and the Herbig Ae star MWC 480. We report the first detection of HC3N at 5 sigma in the GO Tau and MWC 480 disks with the IRAM 30-m, and in the LkCa 15 disk (5 sigma), using the IRAM array, with derived column densities of the order of 10^{12}cm^{-2}. We also obtain stringent upper limits on CCS (N < 1.5 x 10^{12} cm^{-3}). We discuss the observational results by comparing them to column densities derived from existing chemical disk models (computed using the chemical code Nautilus) and based on previous nitrogen and sulfur-bearing molecule observations. The observed column densities of HC3N are typically two orders of magnitude lower than the existing predictions and appear to be lower in the presence of strong UV flux, suggesting that the molecular chemistry is sensitive to the UV penetration through the disk. The CCS upper limits reinforce our model with low elemental abundance of sulfur derived from other sulfur-bearing molecules (CS, H2S and SO).Comment: 8 pages, 4 figures, 3 tables, Accepted for publication in Ap

    A Study of CO Emission in High Redshift QSOs Using the Owens Valley Millimeter Array

    Get PDF
    Searches for CO emission in high-redshift objects have traditionally suffered from the accuracy of optically-derived redshifts due to lack of bandwidth in correlators at radio observatories. This problem has motivated the creation of the new COBRA continuum correlator, with 4 GHz available bandwidth, at the Owens Valley Radio Observatory Millimeter Array. Presented here are the first scientific results from COBRA. We report detections of redshifted CO(J=3-2) emission in the QSOs SMM J04135+10277 and VCV J140955.5+562827, as well as a probable detection in RX J0911.4+0551. At redshifts of z=2.846, z=2.585, and z=2.796, we find integrated CO flux densities of 5.4 Jy km/s, 2.4 Jy km/s, and 2.9 Jy km/s for SMM J04135+10277, VCV J140955.5+562827, and RX J0911.4+0551, respectively, over linewidths of Delta(V_{FWHM}) ~ 350 km/s. These measurements, when corrected for gravitational lensing, correspond to molecular gas masses of order M(H_2) ~ 10^{9.6-11.1} solar masses, and are consistent with previous CO observations of high-redshift QSOs. We also report 3-sigma upper limits on CO(3-2) emission in the QSO LBQS 0018-0220 of 1.3 Jy km/s. We do not detect significant 3mm continuum emission from any of the QSOs, with the exception of a tentative (3-sigma) detection in RX J0911.4+0551 of S_{3mm}=0.92 mJy/beam.Comment: 18 pages, 5 figures, 2 tables, accepted to ApJ. Changes made for version 2: citations added, 2 objects added to Table 2 and Figure

    The Hall instability of thin weakly-ionized stratified Keplerian disks

    Full text link
    The stratification-driven Hall instability in a weakly ionized polytropic plasma is investigated in the local approximation within an equilibrium Keplerian disk of a small aspect ratio. The leading order of the asymptotic expansions in the aspect ratio is applied to both equilibrium as well as the perturbation problems. The equilibrium disk with an embedded purely toroidal magnetic field is found to be stable to radial, and unstable to vertical short-wave perturbations. The marginal stability surface is found in the space of the local Hall and inverse plasma beta parameters, as well as the free parameter of the model which is related to the total current through the disk. To estimate the minimal values of the equilibrium magnetic field that leads to instability, the latter is constructed as a sum of a current free magnetic field and the simplest approximation for magnetic field created by a distributed electric current.Comment: 13 pages, 7 figure

    Molecular line radiative transfer in protoplanetary disks: Monte Carlo simulations versus approximate methods

    Full text link
    We analyze the line radiative transfer in protoplanetary disks using several approximate methods and a well-tested Accelerated Monte Carlo code. A low-mass flaring disk model with uniform as well as stratified molecular abundances is adopted. Radiative transfer in low and high rotational lines of CO, C18O, HCO+, DCO+, HCN, CS, and H2CO is simulated. The corresponding excitation temperatures, synthetic spectra, and channel maps are derived and compared to the results of the Monte Carlo calculations. A simple scheme that describes the conditions of the line excitation for a chosen molecular transition is elaborated. We find that the simple LTE approach can safely be applied for the low molecular transitions only, while it significantly overestimates the intensities of the upper lines. In contrast, the Full Escape Probability (FEP) approximation can safely be used for the upper transitions (J_{\rm up} \ga 3) but it is not appropriate for the lowest transitions because of the maser effect. In general, the molecular lines in protoplanetary disks are partly subthermally excited and require more sophisticated approximate line radiative transfer methods. We analyze a number of approximate methods, namely, LVG, VEP (Vertical Escape Probability) and VOR (Vertical One Ray) and discuss their algorithms in detail. In addition, two modifications to the canonical Monte Carlo algorithm that allow a significant speed up of the line radiative transfer modeling in rotating configurations by a factor of 10--50 are described.Comment: 47 pages, 12 figures, accepted for publication in Ap

    CI observations in the CQ Tau proto-planetary disk: evidence for a very low gas-to-dust ratio ?

    Get PDF
    Gas and dust dissipation processes of proto-planetary disks are hardly known. Transition disks between Class II (proto-planetary disks) and Class III (debris disks) remain difficult to detect. We investigate the carbon chemistry of the peculiar CQ Tau gas disk. It is likely a transition disk because it exhibits weak CO emission with a relatively strong millimeter continuum, indicating that the disk might be currently dissipating its gas content. We used APEX to observe the two CI lines at 492GHz and 809 GHz in the disk orbiting CQ Tau. We compare the observations to several chemical model predictions. We focus our study on the influence of the stellar UV radiation shape and gas-to-dust ratio. We did not detect the CI lines. However, our upper limits are deep enough to exclude high-CI models. The only available models compatible with our limits imply very low gas-to-dust ratio, of the order of a few, only. These observations strengthen the hypothesis that CQ Tau is likely a transition disk and suggest that gas disappears before dust.Comment: 5 pages, 5 figures, accepted for publication in A&

    Rotating molecular outflows: the young T Tauri star in CB26

    Full text link
    The disk-outflow connection is thought to play a key role in extracting excess angular momentum from a forming proto-star. Though jet rotation has been observed in a few objects, no rotation of molecular outflows has been unambiguously reported so far. We report new millimeter-interferometric observations of the edge-on T Tauri star - disk system in the isolated Bok globule CB26. The aim of these observations was to study the disk-outflow relation in this 1Myr old low-mass young stellar object. The IRAM PdBI array was used to observe 12CO(2-1) at 1.3mm in two configurations, resulting in spectral line maps with 1.5 arcsec resolution. We use an empirical parameterized steady-state outflow model combined with 2-D line radiative transfer calculations and chi^2-minimization in parameter space to derive a best-fit model and constrain parameters of the outflow. The data reveal a previously undiscovered collimated bipolar molecular outflow of total length ~2000 AU, escaping perpendicular to the plane of the disk. We find peculiar kinematic signatures that suggest the outflow is rotating with the same orientation as the disk. However, we could not ultimately exclude jet precession or two misaligned flows as possible origin of the observed peculiar velocity field. There is indirect indication that the embedded driving source is a binary system, which, together with the youth of the source, could provide the clue to the observed kinematic features of the outflow. CB26 is so far the most promising source to study the rotation of a molecular outflow. Assuming that the outflow is rotating, we compute and compare masses, mass flux, angular momenta, and angular momentum flux of disk and outflow and derive disk dispersal timescales of 0.5...1 Myr, comparable to the age of the system.Comment: 14 pages, 6 figures, to appear in Astronomy & Astrophysic

    Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15 and MWC 480

    Get PDF
    We report sub-arcsec CO observations of the disks around MWC 480, LkCa 15 and DM Tau, and simultaneous measurements of HCO+ J=1-0. We derive the disk properties by fitting a standard disk model, with all parameters power laws of the distance to the star. Biases are explained and discussed. We find evidence for vertical temperature gradient in the disks of MWC 480 and DM Tau, as in AB Aur, but not in LkCa 15. The disks temperature increase with stellar effective temperature. Most of the CO gas is at temperatures smaller than 17 K, the condensation temperature on grains. The scale height of the CO distribution appears larger (by 50%) than the hydrostatic scale height. The more UV luminous stars have more CO, but there is no simple dependency of CO abundance and isotopologue ratio with stellar type. The 13CO/HCO+ ratio is around 600. The temperature behaviour is consistent with expectations, but published chemical models have difficulty reproducing the observed CO quantities. Vertical mixing and photo-dissociation at the disk outer edge seem important chemical agents. The CO data suggest a more complex surface density distribution than assumed in models.Comment: Astronomy and Astrophysics (2007) accepted in 200
    corecore