233 research outputs found
Advanced optimal extraction for the Spitzer/IRS
We present new advances in the spectral extraction of point-like sources
adapted to the Infrared Spectrograph onboard the Spitzer Space Telescope. For
the first time, we created a super-sampled point spread function of the
low-resolution modules. We describe how to use the point spread function to
perform optimal extraction of a single source and of multiple sources within
the slit. We also examine the case of the optimal extraction of one or several
sources with a complex background. The new algorithms are gathered in a plugin
called Adopt which is part of the SMART data analysis software.Comment: Accepted for publication in PAS
ISM enrichment and local pollution in dwarf galaxies
The fate of metals after they are released in starburst episodes is still
unclear. What phases of the interstellar medium are involved, in which
timescales? Evidence has grown over the past few years that the neutral phase
of blue compact dwarf (BCD) galaxies may be metal- deficient as compared to the
ionized gas of their HII regions. These results have strong implications for
our understanding of the chemical evolution of galaxies. We review here the
main results and the main caveats in the abundance determination from far-UV
absorption-lines. We also discuss possible scenarios concerning the journey of
metals into the interstellar medium, or even their ejection from the galaxy
into the intergalactic medium.Comment: Long version of a proceeding for the conference "A Universe of Dwarf
Galaxies: Observations, Theories, Simulations" held in Lyon, France
(14th-18th, June 2010
PAH Strength and the Interstellar Radiation Field around the Massive Young Cluster NGC3603
We present spatial distribution of polycyclic aromatic hydrocarbons and
ionized gas within the Galactic giant HII region NGC3603. Using the IRS
instrument on board the Spitzer Space Telescope, we study in particular the PAH
emission features at ~5.7, 6.2, 7.7, 8.6, and 11.3um, and the [ArII] 6.99um,
[NeII] 12.81um, [ArIII] 8.99um, and [SIV] 10.51um forbidden emission lines. The
observations probe both ionized regions and photodissociation regions. Silicate
emission is detected close to the central cluster while silicate absorption is
seen further away. We find no significant variation of the PAH ionization
fraction across the whole region. The emission of very small grains lies closer
to the central stellar cluster than emission of PAHs. The PAH/VSG ratio
anticorrelates with the hardness of the interstellar radiation field suggesting
a destruction mechanism of the molecules within the ionized gas, as shown for
low-metallicity galaxies by Madden et al. (2006).Comment: Accepted for publication in ApJ. Corrected typo
Elemental Abundances of Blue Compact Dwarfs from mid-IR Spectroscopy with Spitzer
We present a study of elemental abundances in a sample of thirteen Blue
Compact Dwarf (BCD) galaxies, using the 10--37m high resolution
spectra obtained with Spitzer/IRS. We derive the abundances of neon and sulfur
for our sample using the infrared fine-structure lines probing regions which
may be obscured by dust in the optical and compare our results with similar
infrared studies of starburst galaxies from ISO. We find a good correlation
between the neon and sulfur abundances, though sulfur is under-abundant
relative to neon with respect to the solar value. A comparison of the elemental
abundances (neon, sulfur) measured from the infrared data with those derived
from the optical (neon, sulfur, oxygen) studies reveals a good overall
agreement for sulfur, while the infrared derived neon abundances are slightly
higher than the optical values. This indicates that either the metallicities of
dust enshrouded regions in BCDs are similar to the optically accessible
regions, or that if they are different they do not contribute substantially to
the total infrared emission of the host galaxy.Comment: 11 pages, 6 figures, accepted by Ap
Chemical composition and mixing in giant HII regions: NGC3603, 30Doradus, and N66
We investigate the chemical abundances of NGC3603 in the Milky Way, of
30Doradus in the Large Magellanic Cloud, and of N66 in the Small Magellanic
Cloud. Mid-infrared observations with the Infrared Spectrograph onboard the
Spitzer Space Telescope allow us to probe the properties of distinct physical
regions within each object: the central ionizing cluster, the surrounding
ionized gas, photodissociation regions, and buried stellar clusters. We detect
[SIII], [SIV], [ArIII], [NeII], [NeIII], [FeII], and [FeIII] lines and derive
the ionic abundances. Based on the ionic abundance ratio (NeIII/H)/(SIII/H), we
find that the gas observed in the MIR is characterized by a higher degree of
ionization than the gas observed in the optical spectra. We compute the
elemental abundances of Ne, S, Ar, and Fe. We find that the alpha-elements Ne,
S, and Ar scale with each other. Our determinations agree well with the
abundances derived from the optical. The Ne/S ratio is higher than the solar
value in the three giant HII regions and points toward a moderate depletion of
sulfur on dust grains. We find that the neon and sulfur abundances display a
remarkably small dispersion (0.11dex in 15 positions in 30Doradus), suggesting
a relatively homogeneous ISM, even though small-scale mixing cannot be ruled
out.Comment: Accepted for submission to ApJ. The present version replaces the
submitted one. Changes: new title, new figure, the text was modified in the
discussio
Is the interstellar gas of starburst galaxies well mixed?
The extent to which the ISM in galaxies is well mixed is not yet settled.
Measured metal abundances in the diffuse neutral gas of star--forming gas--rich
dwarf galaxies are deficient with respect to that of the ionized gas. The
reasons, if real, are not clear and need to be based on firm grounds. Far-UV
spectroscopy of giant HII regions such as NGC604 in the spiral galaxy M33 using
FUSE allows us to investigate possible systematic errors in the metallicity
derivation. We still find underabundances of nitrogen, oxygen, argon, and iron
in the neutral phase by a factor of~6. This could either be explained by the
presence of less chemically evolved gas pockets in the sightlines or by dense
clouds out of which HIIregions form. Those could be more metallic than the
diffuse medium.Comment: 4 pages, 2 figures;contribution to Starbursts: from 30 Dor to Lyman
Break Galaxies, 6 -10 September 2004, Institute of Astronomy, University of
Cambridge, U
The extraordinary mid-infrared spectral properties of FeLoBAL Quasars
We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with
the Spitzer space telescope. The spectra span a range of shapes, from hot dust
dominated AGN with silicate emission at 9.7 microns, to moderately obscured
starbursts with strong Polycyclic Aromatic Hydrocarbon (PAH) emission. The
spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen
in any QSO at any redshift, implying that the starburst dominates the mid-IR
emission with an associated star formation rate of order 2700 solar masses per
year. With the caveats that our sample is small and not robustly selected, we
combine our mid-IR spectral diagnostics with previous observations to propose
that FeLoBAL QSOs are at least largely comprised of systems in which (a) a
merger driven starburst is ending, (b) a luminous AGN is in the last stages of
burning through its surrounding dust, and (c) which we may be viewing over a
restricted line of sight range.Comment: ApJ, accepte
Blue compact dwarf galaxies with <i>Spitzer</i>: the infrared/radio properties
We study the correlation between the radio, mid-infrared, and far-infrared properties for a sample of 28 blue compact dwarf (BCD) and low-metallicity star-forming galaxies observed by Spitzer. We find that these sources extend the same far-infrared-to-radio correlation typical of star-forming late-type galaxies to lower luminosities. In BCDs, the 24 μm (or 22 μm) mid-infrared-to-radio correlation is similar to that of starburst galaxies, although there is somewhat larger dispersion in their q24 parameter compared to their qFIR. No strong correlations between the q parameter and galaxy metallicity or effective dust temperature have been detected, although there is a hint of decreasing q24 at low metallicities. The two lowest metallicity dwarfs in our sample, I Zw 18 and SBS 0335-052E, despite their similar chemical abundance, deviate from the average q24 ratio in opposite manners, displaying an apparent radio excess and dust excess, respectively
Physical conditions in the gas phases of the giant HII region LMC-N11 unveiled by Herschel - I. Diffuse [CII] and [OIII] emission in LMC-N11B
(Abridged) The Magellanic Clouds provide a nearby laboratory for metal-poor
dwarf galaxies. The low dust abundance enhances the penetration of UV photons
into the interstellar medium (ISM), resulting in a relatively larger filling
factor of the ionized gas. Furthermore, there is likely a hidden molecular gas
reservoir probed by the [CII]157um line. We present Herschel/PACS maps in
several tracers, [CII], [OI]63um,145um, [NII]122um, [NIII]57um, and [OIII]88um
in the HII region N11B in the Large Magellanic Cloud. Halpha and [OIII]5007A
images were used as complementary data to investigate the effect of dust
extinction. Observations were interpreted with photoionization models to infer
the gas conditions and estimate the ionized gas contribution to the [CII]
emission. Photodissociation regions (PDRs) are probed through polycyclic
aromatic hydrocarbons (PAHs). We first study the distribution and properties of
the ionized gas. We then constrain the origin of [CII]157um by comparing to
tracers of the low-excitation ionized gas and of PDRs. [OIII] is dominated by
extended emission from the high-excitation diffuse ionized gas; it is the
brightest far-infrared line, ~4 times brighter than [CII]. The extent of the
[OIII] emission suggests that the medium is rather fragmented, allowing far-UV
photons to permeate into the ISM to scales of >30pc. Furthermore, by comparing
[CII] with [NII], we find that 95% of [CII] arises in PDRs, except toward the
stellar cluster for which as much as 15% could arise in the ionized gas. We
find a remarkable correlation between [CII]+[OI] and PAH emission, with [CII]
dominating the cooling in diffuse PDRs and [OI] dominating in the densest PDRs.
The combination of [CII] and [OI] provides a proxy for the total gas cooling in
PDRs. Our results suggest that PAH emission describes better the PDR gas
heating as compared to the total infrared emission.Comment: Accepted for publication in Astronomy and Astrophysics. Fixed
inverted line ratio in Sect. 5.
- …