281 research outputs found

    Observations of the mesospheric semi-annual oscillation (MSAO) in water vapour by Odin/SMR

    Get PDF
    International audienceMesospheric water vapour measurements taken by the SMR instrument onboard the Odin satellite between 2002 and 2006 have been analysed with focus on the mesospheric semi-annual circulation in the tropical and subtropical region. This analysis provides the first complete picture of mesospheric SAO in water vapour, covering altitudes above 80 km where the only previous study based on UARS/HALOE data was limited. Our analysis shows a clear semi-annual variation in the water vapour distribution in the entire altitude range between 65 km and 100 km in the equatorial area. Maxima occur near the equinoxes below 75 km and around the solstices above 80 km. The phase reversal occurs in the small layer in-between, consistent with the downward propagation of the mesospheric SAO in the zonal wind in this altitude range. The SAO amplitude exhibits a double peak structure, with maxima at about 75 km and 81 km. The observed amplitudes show higher values than the UARS/HALOE amplitudes. The upper peak amplitude remains relatively constant with latitude. The lower peak amplitude decreases towards higher latitudes, but recovers in the Southern Hemisphere subtropics. On the other hand, the annual variation is much more prominent in the northern hemispheric subtropics. Furthermore, higher volume mixing ratios during summer and lower values during winter are observed in the Northern Hemisphere subtropics, as compared to the corresponding latitude range in the Southern Hemisphere

    A study of polar ozone depletion based on sequential assimilation of satellite data from the ENVISAT/MIPAS and Odin/SMR instruments

    Get PDF
    International audienceThe objective of this study is to demonstrate how polar ozone depletion can be mapped and quantified by assimilating ozone data from satellites into the wind driven transport model DIAMOND, (Dynamical Isentropic Assimilation Model for OdiN Data). By assimilating a large set of satellite data into a transport model, ozone fields can be built up that are less noisy than the individual satellite ozone profiles. The transported fields can subsequently be compared to later sets of incoming satellite data so that the rates and geographical distribution of ozone depletion can be determined. By tracing the amounts of solar irradiation received by different air parcels in a transport model it is furthermore possible to study the photolytic reactions that destroy ozone. In this study, destruction of ozone that took place in the Antarctic winter of 2003 and in the Arctic winter of 2002/2003 have been examined by assimilating ozone data from the ENVISAT/MIPAS and Odin/SMR satellite-instruments. Large scale depletion of ozone was observed in the Antarctic polar vortex of 2003 when sunlight returned after the polar night. By mid October ENVISAT/MIPAS data indicate vortex ozone depletion in the ranges 80?100% and 70?90% on the 425 and 475 K potential temperature levels respectively while the Odin/SMR data indicates depletion in the ranges 70?90% and 50?70%. The discrepancy between the two instruments has been attributed to systematic errors in the Odin/SMR data. Assimilated fields of ENVISAT/MIPAS data indicate ozone depletion in the range 10?20% on the 475 K potential temperature level, (~19 km altitude), in the central regions of the 2002/2003 Arctic polar vortex. Assimilated fields of Odin/SMR data on the other hand indicate ozone depletion in the range 20?30%

    Efficient full wave code for the coupling of large multirow multijunction LH grills

    Get PDF
    The full wave code OLGA, for determining the coupling of a single row lower hybrid launcher (waveguide grills) to the plasma, is extended to handle multirow multijunction active passive structures (like the C3 and C4 launchers on TORE SUPRA) by implementing the scattering matrix formalism. The extended code is still computationally fast because of the use of (i) 2D splines of the plasma surface admittance in the accessibility region of the k-space, (ii) high order Gaussian quadrature rules for the integration of the coupling elements and (iii) utilizing the symmetries of the coupling elements in the multiperiodic structures. The extended OLGA code is benchmarked against the ALOHA-1D, ALOHA-2D and TOPLHA codes for the coupling of the C3 and C4 TORE SUPRA launchers for several plasma configurations derived from reflectometry and interferometery. Unlike nearly all codes (except the ALOHA-1D code), OLGA does not require large computational resources and can be used for everyday usage in planning experimental runs. In particular, it is shown that the OLGA code correctly handles the coupling of the C3 and C4 launchers over a very wide range of plasma densities in front of the grill

    MizAR 60 for Mizar 50

    Get PDF
    As a present to Mizar on its 50th anniversary, we develop an AI/TP system that automatically proves about 60% of the Mizar theorems in the hammer setting. We also automatically prove 75% of the Mizar theorems when the automated provers are helped by using only the premises used in the human-written Mizar proofs. We describe the methods and large-scale experiments leading to these results. This includes in particular the E and Vampire provers, their ENIGMA and Deepire learning modifications, a number of learning-based premise selection methods, and the incremental loop that interleaves growing a corpus of millions of ATP proofs with training increasingly strong AI/TP systems on them. We also present a selection of Mizar problems that were proved automatically

    Electron Bernstein Wave Simulations and Comparison to Preliminary NSTX Emission Data

    Get PDF
    Simulations indicate that during flattop current discharges the optimal angles for the aiming of the National Spherical Torus Experiment (NSTX) antennae are quite rugged and basically independent of time. The time development of electron Bernstein wave emission (EBWE) at particular frequencies as well as the frequency spectrum of EBWE as would be seen by the recently installed NSTX antennae are computed. The simulation of EBWE at low frequencies (e.g., 16 GHz) agrees well with the recent preliminary EBWE measurements on NSTX. At high frequencies, the sensitivity of EBWE to magnetic field variations is understood by considering the Doppler broadened electron cyclotron harmonics and the cutoffs and resonances in the plasma. Significant EBWE variations are seen if the magnetic field is increased by as little as 2% at the plasma edge. The simulations for the low frequency antenna are compared to preliminary experimental data published separately by Diem et al

    Influence of Antenna Aiming on ECE in MAST

    Get PDF
    The effect of the direction of the detected beam on the intensity of ECE is studied. It is found that the combined effects of the strong dependence of the conversion efficiencey of O mode at the plasma resonance on the direction of the incident wave and the partial screening of the beam waist by the MAST vessel wall, can be responsible for the weakening of ECE emission for some frequencies. The theoretical model for ECE data interpretation on MAST has been significantly improved. New features of the model are as follows: the quasioptical treatment of the receiving antenna, interference, polarization and screening effects of the vacuum window and collisional damping of EBWs in the peripheral plasma

    Coupled Ray-Tracing and Fokker-Planck EBW Modeling for Spherical Tokamaks

    Get PDF
    The AMR (Antenna—Mode-conversion—Ray-tracing) code [1, 2] has been recently coupled with the LUKE [3] Fokker-Planck code. This modeling suite is capable of complex simulations of electron Bernstein wave (EBW) emission, heating and current drive. We employ these codes to study EBW heating and current drive performance under spherical tokamak (ST) configurations—typical NSTX discharges are employed. EBW parameters, such as frequency, antenna position and direction, are varied and optimized for particular configurations and objectives. In this way, we show the versatility of EBWs

    Validation of equilibrium tools on the COMPASS tokamak

    Get PDF
    SOFT 2014 conference, submitted to Fusion Engineering and DesignInternational audienceVarious MHD (magnetohydrodynamic) equilibrium tools, some of which being recently developed or considerably updated, are used on the COMPASS tokamak at IPP Prague. MHD equilibrium is a fundamental property of the tokamak plasma, whose knowledge is required for many diagnostics and modelling tools. Proper benchmarking and validation of equilibrium tools is thus key for interpreting and planning tokamak experiments. We present here benchmarks and comparisons to experimental data of the EFIT++ reconstruction code [L.C. Appel et al., EPS 2006, P2.184], the free-boundary equilibrium code FREEBIE [J.-F. Artaud, S.H. Kim, EPS 2012, P4.023], and a rapid plasma boundary reconstruction code VacTH [B. Faugeras et al., PPCF 56, 114010 (2014)]. We demonstrate that FREEBIE can calculate the equilibrium and corresponding poloidal field (PF) coils currents consistently with EFIT++ reconstructions from experimental data. Both EFIT++ and VacTH can reconstruct equilibria generated by FREEBIE from synthetic, optionally noisy diagnostic data. Hence, VacTH is suitable for real-time control. Optimum reconstruction parameters are estimated

    Correlative Imaging of Individual CsPbBr3 Nanocrystals: Role of Isolated Grains in Photoluminescence of Perovskite Polycrystalline Thin Films

    Full text link
    We report on the optical properties of CsPbBr3_3 polycrystalline thin film on a single grain level. A sample comprised of isolated nanocrystals (NCs) mimicking the properties of the polycrystalline thin film grains that can be individually probed by photoluminescence spectroscopy was prepared. These NCs were analyzed using correlative microscopy allowing the examination of structural, chemical, and optical properties from identical sites. Our results show that the stoichiometry of the CsPbBr3_3 NCs is uniform and independent of the NCs' morphology. The photoluminescence (PL) peak emission wavelength is slightly dependent on the dimensions of NCs, with the blue shift up to 9\,nm for the smallest analyzed NCs. The magnitude of the blueshift is smaller than the emission linewidth, thus detectable only by high-resolution PL mapping. By comparing the emission wavelengths obtained from the experiment and a rigorous effective mass model we can fully attribute the observed variations to the size-dependent quantum confinement effect.Comment: 23 pages, 3 figure

    Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress

    Get PDF
    The main objective of this study was to determine the effects of acclimation to ultraviolet (UV) and photosynthetically active radiation (PAR) on photoprotective mechanisms in barley leaves. Barley plants were acclimated for 7 days under three combinations of high or low UV and PAR treatments ([UV-PAR-], [UV-PAR+], [UV+PAR+]). Subsequently, plants were exposed to short-term high radiation ;stress (HRS; defined by high intensities of PAR - 1000 mu mol m(-2) s(-1), UV-A - 10 W m(-2) and UV-B 2 W m(-2) for 4 h), to test their photoprotective capacity. The barley variety sensitive to photooxidative stress (Barke) had low constitutive flavonoid content compared to the resistant variety (Bonus) under low UV and PAR intensities. The accumulation of lutonarin and 3-feruloylquinic acid, but not of saponarin, was greatly enhanced by high PAR and further increased by UV exposure. Acclimation of plants to both high UV and PAR intensities also increased the total pool of xanthophyll-cycle pigments (VAZ). Subsequent exposure to HRS revealed that prior acclimation to UV and PAR was able to ameliorate the negative consequences of HRS on photosynthesis. Both total contents of epidermal flavonols and the total pool of VAZ were closely correlated with small reductions in light-saturated CO2 assimilation rate and maximum quantum yield of photosystem II photochemistry caused by HRS. Based on these results, we conclude that growth under high PAR can substantially increase the photoprotective capacity of barley plants compared with plants grown under low PAR. However, additional UV radiation is necessary to fully induce photoprotective mechanisms in the variety Barke. This study demonstrates that UV-exposure can lead to enhanced photoprotective capacity and can contribute to the induction of tolerance to high radiation stress in barley. (C) 2015 Elsevier Masson SAS. All rights reserved.Peer reviewe
    • …
    corecore