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Coupled Ray-tracing and Fokker-Planck EBW 
Modeling for Spherical Tokamaks 

J. Urban," J. Decker,'' Y. Peysson,'' J. Preinhaelter," G. Taylor," L. Vahala,'' 
G. Vahala" 

' EURATOM/IPP.CR Association. 182 00 Prague. Czech Republic 
' EURATOM-CEA. Cadarache. France 

^ Princeton Plasma Physics Laboratory. Princeton. NJ 08543. USA 
'' Old Dominion University. Norfolk. VA 23529. USA 

' College of William & Mary. Williamsburg VA 23185. USA 

Abstract. The AMR (Antenna—Mode-conversion—Ray-tracing) code [1, 2] has been recently coupled 
with the LUKE [3] Fokker-Planck code. This modeling suite is capable of complex simulations of 
electron Bernstein wave (EBW) emission, heating and current drive. We employ these codes to study 
EBW heating and current drive performance under spherical tokamak (ST) configurations—typical 
NSTX discharges are employed. EBW parameters, such as frequency, anteima position and direction, are 
varied and optimized for particular configurations and objectives. In this way, we show the versatility of 
EBWs. 

Keywords: Fusion, tokamak, heating, current drive, electron Bernstein wave, EBW. 
PACS: 52.35.Hr, 52.50.Sw, 52.55.Fa. 

INTRODUCTION 

While the "standard" electron cyclotron heating and current drive (ECH/ECCD) are among 
the most important auxiliary systems ftir present and future magnetic fusion devices, their 
application to spherical tokamaks, which operate in "overdense" regimes (i.e., the electron 
plasma frequency a is much greater than the electron cyclotron frequency w^^), is generally 
impossible because the involved ordinary (O) and extraordinary (X) electron cyclotron waves 
are cutoff in the fundamental electron cyclotron (EC) harmonics range. Using higher 
harmonics is not possible because of poor absorption. The only possibility are the electron 
Bernstein waves [4] (EBWs)—electrostatic electron cyclotron waves, which can propagate in 
overdense plasmas. EBWs are typically very well absorbed at any EC harmonic and they can 
efficiently drive current because of their interaction with supra-thermal electrons. The 
drawback of EBWs is the fact that they must be excited by O- or X-modes via a mode 
conversion process. The waves must be injected under specific angles to achieve an efficient 
conversion. EBWs are also more difficult to control—they are tightly coupled with the plasma 
parameters, particularly the magnetic field and the electron density and temperature profiles. 

In this paper, we present a survey of EBW heating and current drive possibilities for 
spherical tokamaks. The study has been performed with two coupled simulation codes—AMR 
[1, 2], which provides mode conversion and ray-tracing calculations, and LUKE [3], a 
Fokker-Planck code, which provides quasi-linear power deposition and current drive 
calculations. Various injection scenarios are considered for typical NSTX conditions. 
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SIMULATION METHODS 

A Gaussian antenna beam is assumed in the simulation, with the beam waist close to the 
target plasma and with a fixed Rayleigh range to obtain a realistic waist size with a reasonable 
divergence. The toroidal and poloidal launch angles 9^^^ and 9 ^^ are always chosen optimum 
for the O-X-B conversion process. The mode conversion efficiency is calculated by the AMR 
code. The O-X-B scenario is preferred because it can be used at any frequency and density 
gradient, which is not the case of the direct X-B conversion. 

Electron Bernstein wave propagation is well described by standard ray-tracing with the 
non-relativistic hot-plasma electrostatic dispersion relation (see, e.g., [5, 6]). The imaginary 
part of the dispersion relation determines the wave packet damping along the ray trajectory 
[7]: 

dP 
- = - a P = : 

2ImZ) 
7 ^ . (1) dr leReD/e^l 

For the wave damping in fiision-relevant plasmas, however, a relativistic correction to a is 
necessary [8]. We have included a simple (weakly) relativistic damping rate into the AMR 
ray-tracing (eq. (39) from [8]), which accounts for the relativistic shift of the resonance: 
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Ray-tracing results, particularly the ray trajectories with the Â , and N^ wave vector 
components evolution, provide the input for the LUKE 3D ( p , pJp, w) Fokker-Planck 
code, which then calculates the quasilinear wave damping and current drive. The equilibrium 
and plasma profiles are identical in AMR and LUKE. 

RESULTS 

Shown here are AMR + LUKE simulation results for a typical NSTX L-mode. Results for 
an H-mode are not completely available and have not been analyzed yet. First and second 
harmonic ranges 12 - 18 GHz and 22 - 28 GHz have been chosen because of their estimative 
accessibility. Higher harmonics would also be possible, however, with a risk of harmonic 
overlapping, which would decrease the current drive efficiency. A Gaussian antenna beam 
with the Rayleigh range of 0.5 m, focused almost to the last closed flux surface (LCFS), is 
assumed, with power P -\ MW. 

First, the optimum antenna angles (toroidal and poloidal) are calculated by AMR. In Fig. 1 
are shown the angular windows for the first and the second harmonic ranges in two different 
vertical antenna positions. The angular windows are quite broad, which makes the antenna 
aiming less sensitive to misalignments. The large angular width is due to the relatively steep 
density gradient. The H-mode gradient is even steeper, enabling efficient conversion at a very 
broad range of angles. The optimum angles are, however, different in L- and H-mode because 
of different poloidal magnetic field. 
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FIGURE 1. Angular O-X-EBW windows for a) first harmonic range 12-18 GHz, mid-plane launch, b) second 
harmonic range 22 - 28 GHz, Z=0.2 m launch. Contours show 90 % conversion efficiency, cross-marks the 

optimum angles for each frequency. NSTX L-mode parameters. 

Two EBW launching parameters can be chosen arbitrarily—the Irequency and the vertical 
antenna position ZA. TWO (opposite) toroidal angles are then possible for given Irequency and 
antenna position. It is well known, and validated by our ray-tracing results, that EBWs rays 
(and their A*",!) typically oscillate when launched close to the mid-plane. M^ can become very 
small (<0.1) in such cases, which minimizes the Doppler shift and thus the waves are 
absorbed in a close vicinity of the EC resonance w-nw^^. The damping location of the mid-
plane EBWs can therefore be easily determined. Such scenario can be favorable for central 
heating, but is very unfavorable for current drive because of the small Â | with a random sign. 

The ray-tracing/Fokker-Planck results for the NSTX L-mode are shown in Fig. 2. This 
figure demonstrates the dependence of the deposition location yo"™ and the total driven 
current on the two main parameters—the Irequency and the vertical antenna position. The 
current drive efficiency (^ = ?> .lllR^n^jPT^ [9] is also calculated. The accessibility in these 
cases is approximately 0.1 </?<0.6 for the first harmonic and 0.2 <p<0.8 for the second 
harmonic waves. The current direction is determined by the A*",! sign and by the current drive 
mechanism—Fisch-Boozer or Ohkawa. The toroidal launch angle (not shown here) plays a 
role only if the deposition takes place at the edge; otherwise, the A*",! sign is determined by ZA 
only. Fisch-Boozer is the dominant mechanism at smaller radii, while Ohkawa current drive 
becomes important closer to the edge, where the trapped particles traction increases. These 
two mechanisms can cancel and consequently no net current is driven in certain cases. In most 
cases, the current drive is more efficient at the first harmonic. 

vertical anteima position Z^ [m] 
12 14 16 18 20 22 24 26 28 

Irequency [GHz] 

FIGURE 2. Deposition location /?"" and the total driven current / versus a) vertical anteima position ZA for 
16 GHz, b) frequency for Z^ - ±0.2 m. 
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CONCLUSIONS AND OUTLOOK 

The O-X-EBW coupling is efficient in broad angular windows around the optimum angles, 
which depend on ZA, frequency, and the plasma parameters. The excited EBWs can 
efficiently be absorbed and drive current at certain radii. The current direction is determined 
by ZA (above / below the mid-plane). The deposition location can be controlled by changing 
either ZA or the frequency. The frequency-based control provides larger radial range and the 
yo"" dependence is clearer and smoother. This method would, however, require 
technologically challenging step-tunable gyrotrons. Changing ZA, on the other hand, requires 
complex antenna and adjusting the angles at each vertical position. 

More simulations will be performed and analyzed, particularly for the NSTX H-mode, and 
also for other present and future devices (e.g., MAST and MAST-Up grade). This will bring a 
better insight into EBWs' capabilities. 
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