MizAR 60 for Mizar 50

Jan Jakubiv &
Czech Technical University in Prague,
Czech Republic

Zarathustra Goertzel
Czech Technical University in Prague,
Czech Republic

Mirek Olsak
Institut des Hautes Etudes Scientifiques,
Paris, France

Stephan Schulz
DHBW Stuttgart, Germany

Karel Chvalovsky &
Czech Technical University in Prague,
Czech Republic

Cezary Kaliszyk &
Universitat Innsbruck, Austria
INDRC, Prague, Czech Republic

Bartosz Piotrowski &
Czech Technical University in Prague,
Czech Republic

Martin Suda &=

Czech Technical University in Prague,

Czech Republic

Josef Urban

Czech Technical University in Prague,
Czech Republic

—— Abstract

As a present to Mizar on its 50th anniversary, we develop an AI/TP system that automatically
proves about 60 % of the Mizar theorems in the hammer setting. We also automatically prove 75 %
of the Mizar theorems when the automated provers are helped by using only the premises used in the
human-written Mizar proofs. We describe the methods and large-scale experiments leading to these
results. This includes in particular the E and Vampire provers, their ENIGMA and Deepire learning
modifications, a number of learning-based premise selection methods, and the incremental loop that
interleaves growing a corpus of millions of ATP proofs with training increasingly strong AI/TP
systems on them. We also present a selection of Mizar problems that were proved automatically.

2012 ACM Subject Classification Theory of computation — Automated reasoning

Keywords and phrases Mizar, ENIGMA, Automated Reasoning, Machine Learning
Digital Object Identifier 10.4230/LIPIcs.ITP.2023.19

Related Version Extended Version: https://doi.org/10.48550/arXiv.2303.06686
Supplementary Material Software: https://github.com/aidreason/ATP_Proofs

Funding The funding for the multi-year development of the methods and for the experiments was
partially provided by the ERC Consolidator grant AIJREASON no. 649043 (KC, ZG, JJ, BP,
MS and JU), the European Regional Development Fund under the Czech project AI&Reasoning
no. CZ.02.1.01/0.0/0.0/15_003/0000466 (KC, ZG, JJ, MO, JU), the ERC Starting Grant SMART
no. 714034 (JJ, CK, MO), the Czech Science Foundation project 20-06390Y and project RICAIP
no. 857306 under the EU-H2020 programme (MS), ERC-CZ project POSTMAN no. LL1902 (KC,
JJ, BP), Amazon Research Awards (JU), the EU ICT-48 2020 project TAILOR no. 952215 (JU),
and the grant 2018/29/N/ST6/02903 of National Science Center, Poland (BP).

Acknowledgements The development of ENIGMA, premise selection and other methods used here,
as well as the large-scale experiments, benefited from many informal discussions which involved
(at least) Lasse Blaauwbroek, Chad Brown, Thibault Gauthier, Mikold$ Janota, Jelle Piepenbrock,
Stanistaw Purgat, Bob Veroff, and Jifi Vyskocil.
© Jan Jakubuv, Karel Chvalovsky, Zarathustra Goertzel, Cezary Kaliszyk, Mirek Olsidk, Bartosz
5v Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 19; pp. 19:1-19:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:jakubuv@gmail.com
https://orcid.org/0000-0002-8848-5537
mailto:karel@chvalovsky.cz
https://orcid.org/0000-0002-0541-3889
https://orcid.org/0000-0002-8458-2786
mailto:cezary.kaliszyk@uibk.ac.at
https://orcid.org/0000-0002-8273-6059
https://orcid.org/0000-0002-9361-1921
mailto:bartoszpiotrowski@post.pl
https://orcid.org/0000-0002-1699-018X
https://orcid.org/0000-0001-6262-8555
mailto:martin.suda@cvut.cz
https://orcid.org/0000-0003-0989-5800
https://orcid.org/0000-0002-1384-1613
https://doi.org/10.4230/LIPIcs.ITP.2023.19
https://doi.org/10.48550/arXiv.2303.06686
https://github.com/ai4reason/ATP_Proofs
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2

MizAR 60 for Mizar 50

1 Introduction: Mizar, MML, Hammers and AITP

In recent years, methods that combine machine learning (ML), artificial intelligence (AI)
and automated theorem proving (ATP) [44] have been considerably developed, primarily
targeting large libraries of formal mathematics developed by the ITP community. This ranges
from premise selection methods [2] and hammer [7] systems to developing and training
learning-based internal guidance of ATP systems such as E [47,49] and Vampire [37] on the
thousands to millions of problems extracted from the ITP libraries. Such large ITP corpora
have further enabled research topics such as automated strategy invention [57] and tactical
guidance [15], learning-based conjecturing [58], autoformalization [34,61], and development
of metasystems that combine learning and reasoning in various feedback loops [59].

Starting with the March 2003 release! of the MPTP system [54] and the first ML/ TP
and hammer experiments over it [55], the Mizar Mathematical Library [3,4,22] (MML) and
its subsets have as of 2023 been used for twenty years for this research, making it perhaps
the oldest and most researched AI/TP resource in the last two decades.

1.1 Contributions

The last large Mizar40 evaluation [32] of the AI/TP methods over MML was done almost
ten years ago, on the occasion of 40 years of Mizar. Since then, a number of strong methods
have been developed in areas such as premise selection and internal guidance of ATPs. In
this work, we therefore evaluate these methods in a way that can be compared to the Mizar40
evaluation, providing an overall picture of how far the field has moved. Our main results are:

1. Over 75 % of the Mizar toplevel lemmas can today be proved by AI/TP systems when the
premises for the proof can be selected from the library either by a human or a machine.
This should be compared to 56 % in Mizar40 achieved on the same version of the MML.
Over 200 examples of the automatically obtained proofs are analyzed on our web page.?

2. 58.4% of the Mizar toplevel lemmas can be proved today without any help from the
users, i.e., in the large-theory (hammering) mode. This should be compared to about
40.6 % achieved on the same version of the MML in Mizar40. In both cases, this is done
by a large portfolio of AI/TP methods which is limited to 420s of CPU time.

3. Our strongest single AI/TP method alone now proves in 30s 40 % of the lemmas in the
hammering mode, i.e., reaching the same strength as the full 420 s portfolio in Mizar40.

4. Our strongest single AI/TP method now proves in 120s 60 % of the toplevel lemmas
in the human-premises (bushy) mode (Section 6.6), i.e., outperforming the union of all
methods developed in Mizar40 (56 %).

5. We show that our strongest method transfers to a significantly newer version of the
MML which contains a lot of new terminology and lemmas. In particular, on the new
13370 theorems coming from the new 242 articles in MML version 1382, our strongest
method outperforms standard E prover by 58.2 %, while this is only 56.1 % on the Mizar40
version of the library where we do the training and experiments. This is thanks to our
development and use of anonymous [25] logic-aware ML methods that learn only from
the structure of mathematical problems. This is unusual in today’s machine learning
which is dominated by large language models that typically struggle on new terminology.

! http://mizar.uwb.edu.pl/forum/archive/0303/msg00004 . html
2 https://github.com/aidreason/ATP_Proofs

http://mizar.uwb.edu.pl/forum/archive/0303/msg00004.html
https://github.com/ai4reason/ATP_Proofs

J. Jakubuv et al.

1.2 Overview of the Methods and Experiments

The central methods in this evaluation are internal guidance provided by the ENIGMA
(and later also Deepire) system, and premise selection methods. We have also used several
additional approaches such as many previously invented strategies and new methods for
constructing their portfolios, efficient methods for large-scale training on millions of ATP
proofs, methods that interleave multiple runs of ATPs with restarts on ML-based selection of
the best inferred clauses (leapfrogging), and methods for minimizing the premises needed for
the problems by decomposition into many ATP subproblems. These methods are described
in Sections 3, 4, and 5, after introducing the MML in Section 2. Section 6 describes the
large-scale evaluation and its final results, and Section 7 showcases the obtained proofs.

2 The Mizar Mathematical Library and the Mizar40 Corpus

Proof assistant systems are usually developed together with their respective proof libraries.

This allows evaluating and showcasing the available functionality. In the case of Mizar [4],
the developers have very early decided to focus on its library, the MML (Mizar Mathematical
Library) [3]. This was done by establishing a dedicated library committee responsible for the

evaluation of potential Mizar articles to be included, as well as for maintaining the library.
As a result, the MML became one of the largest libraries of formalized mathematics today.

It includes many results absent from those derived in other systems, such as lattices [5] and
random-access Turing machines [36].

All the data gathered and evaluations performed in the paper (with the exception of
version-transfer in Section 6.6) use the same Mizar library version as the previous large
evaluation [32] and all subsequent evaluation papers. This allows us to rigorously compare
the methods and evaluate the improvement. That version of the library, MML 1147, when
exported to first-order logic using the MPTP export [56] corresponds to 57 897 theorems
including the unnamed toplevel lemmas. For a rigorous evaluation in the hammering scenario,
we will further split this dataset into several training and testing parts in Section 6.2.

3 ENIGMA: ATP Guidance and Related Technologies

ENIGMA [11, 18-21, 25, 27-29] stands for “Efficient Learning Based Inference Guiding
Machine”. Tt is the first learning-guided ATP that in 2019 achieved large improvements over
state-of-the-art saturation ATPs [29], and the main ingredient of the work reported here.
This section summarizes previously published research on ENIGMA and also the related
methods that were used to undertake the large-scale experiments done here (Section 6).

3.1 Saturation Theorem Proving Meets Machine Learning

Saturation Provers. State-of-the-art automated theorem provers, like E Prover [45] and
Vampire [37], perform the search for a contradiction, first translating the input first-order
logic problem into a refutationally equivalent set of clauses. Then the prover operates the
proof search using the given clause algorithm. In this algorithm, the proof state is split into
two subsets, the set P of processed clauses, and the set U of unprocessed clauses. Clauses
in U are ordered by a heuristic evaluation function. In each iteration of the main loop, the
(heuristically) best clause in U is picked. This given clause g is then simplified with respect
to all clauses in P. If it is not redundant, it is used in turn to simplify all clauses in P. After
that, all generating inferences between g and the remaining clauses in P are performed. Both

19:3

ITP 2023

19:4

MizAR 60 for Mizar 50

process

processed

given

[erore]

(Training
Problems

L, Enigmatic New
E Prover Proofs

Figure 1 Schema of E Prover with ENIGMA (left), of a two-phase selection model (middle), and
of the prove-learn feedback loop (right).

-

Selection Model

—
Slow Model

ENIGMA
Queue

E Prover
Queue

weight clause Freezer

the newly generated clauses and the simplified clauses from P are then completely simplified
with respect to P, heuristically evaluated, and added to U. This process continues until the
empty clause emerges (or until the system runs out of resources).

Training Data. As of E 1.8 [48], E maintains an internal proof object [50] which allows it
to inspect all proof clauses and designate all clauses that have been selected for processing
and are part of the proof, as positive training examples. All clauses that have been selected
for processing, but not contributed to the proof, are designated as negative training examples.
Clauses that have not been processed at all are neither positive nor negative, reducing the
total number of training examples to typically thousands of processed clauses, as opposed
to millions of clauses generated. E allows the user to request the actual proof object, or to
provide any combination of positive and negative training examples. Examples are provided
in separate batches and are also annotated as positive or negative for easy processing.

ML-Based Selection. Selection of the right given clause is critical in E, and an obvious
point for the use of machine learning (ML). The positive and negative examples are extracted
from previous successful proof searches, and a machine learning model is trained to score the
generated clauses or to classify them as useful (FH) or useless (). E Prover selects the given
clause from a priority queue, where the unprocessed clauses are sorted by various heuristics.
ENIGMA extends E Prover with an additional queue where clauses positively classified by
the ML model are prioritized. The ENIGMA queue is used together with the standard E
selection mechanisms, typically in a cooperative way where roughly half of the clauses are
selected by ENIGMA. This approach proved to be the most efficient in practice.

Parental Guidance. Later ENIGMA [20] introduced learning-based parental guidance, which
addresses the quadratic factor when doing all possible inferences among the processed clauses
in classical saturation-based provers. Instead, an ML model is trained to prevent inferences
between the parent clauses that are unlikely to meaningfully interact. When such an inference
is recognized by the model as useless with a high degree of confidence, the child clause is not
inserted into the set of unprocessed clauses U but its processing is postponed. To maintain
completeness, the clause can not be directly discarded since the ML model might be mistaken.
Instead, the clause is put into a “freezer” from which it can be retrieved in the case the

J. Jakubuv et al.

prover runs out of unprocessed clauses. As opposed to the above clause selection models,
this method affects the standard E selection mechanism because the clause is not inserted
into any queue. ENIGMA clause selection models and parental (generation) models can be
successfully combined. This is schematically illustrated in Figure 1 (left).

Multi-Phase ENIGMA. ML-based multi-phase clause selection was introduced in [20] to
deal with computationally expensive (slow) ML models, like graph neural networks (GNNs).
In a two-phase selection model, a faster model is used for preliminary clause filtering, and
only the clauses that pass are evaluated by the slower model. The fast model is expected to
over-approximate on positive classes so that only clauses classified with high confidence as
negatives are rejected. When parental guidance is added to the mix, this leads to a three-
phase ENIGMA. This is schematically illustrated in Figure 1 (middle). Aggressive forward
subsumption is an additional logic-complete pruning method based on efficient subsumption
indexing in E [46]. We use it to eliminate many redundant generated clauses before calling
more expensive ML methods (GNN) for clause evaluation. For the effect of such methods,
see some of the 3-phase ENIGMA examples in Section 7.

Training. Strong ENIGMAs are typically developed in many prove-learn feedback loops [59]
that proceed as follows. (1) The training data T are curated from (previous) successful proof
searches. (2) A model M is trained on data 7 to distinguish positive from negative clauses.
(3) The model M is run with the ATP (E), usually in cooperation with the strategy used to
obtain the training data. Then we go to step (1) with the new data obtained in step (3).
The loop, illustrated in Figure 1 (right), can be repeated as long as new problems are proved.
We run this loop for several months in this work.

3.2 Gradient Boosted Decision Tree Classifiers and Features

ENIGMA supports classifiers based on Gradient Boosted Decision Trees (GBDTs). In
particular, we experiment with XGBoost [8] and Light GBM [35]. Both frameworks are
efficient and can handle large data well both in training and evaluation. For learning, we
represent first-order clauses by numeric feature vectors. A decision tree is a binary tree with
nodes labeled by conditions on the values of the feature vectors. Given a clause, the tree
is navigated to the leaf where the clause evaluation is stored. Both frameworks work with
a sequence (ensemble) of several trees, constructed in a progressive way (boosting). The
frameworks differ in the underlying algorithm for the construction of decision trees. XGBoost
constructs trees level-wise, while Light GBM leaf-wise. This implies that XGBoost trees are
well-balanced. On the other hand, Light GBM can produce much deeper trees, and the tree
depth limit is indeed an important learning meta-parameter that can be optimized.
ENIGMA extracts various syntactic information from a first-order clause and stores them
in the feature vector of the clause. Given a finite set of features, each feature is assigned
an index in the feature vector, and the corresponding feature value is stored at this index.
For example, a typical clause feature is the clause length. ENIGMA supports the following.
Vertical Features are constructed by traversing the clause syntax tree and collecting all
top-down oriented symbol paths of length 3. Additionally, to abstract from variable names
and to deal with possible collisions of Skolem symbols, all variables are replaced by a special
name ® and all Skolem symbols by ®. Horizontal Features introduce for every term
flt1,...,tn), a new feature f(s1,...,s,), where s; is the top-level symbol of ¢;. Count
Features include the clause length, literal counts, and similar statistics. Conjecture
Features embed the conjecture to be proved in the feature vector. Thusly, ENIGMA is
able to provide goal specific predictions. Parent Features represent a clause by features

19:5

ITP 2023

19:6

MizAR 60 for Mizar 50

(concatenated or summed) of its parents. Feature Hashing is an important step towards
large data in ENIGMA [11]. It significantly reduces the feature vector size and thusly allows
handling of larger data. Each feature is represented by a unique string identifier. This string
is passed through the hashing function and the hash modulo the selected hash base is used
as the feature index. Symbol Anonymization allows to abstract from specific symbol
names [25]. During the extraction of clause features, all symbol names are replaced by symbol
arities, keeping only the information whether the symbol is a function or a predicate. In
this way, a decision tree classifier does not depend on symbol names, at the price of symbol
collisions, which are however empirically mitigated by collecting longer paths as features.

3.3 Graph Neural Network (GNN) Classifiers

Anonymizing graph neural networks provide an alternative approach for abstracting from
specific terminology. ENIGMA uses [25] a symbol-independent GNN architecture initially
developed for guiding tableaux search [39] implemented in TensorFlow [1]. A set of clauses is
directly represented by a hypergraph with three kinds of nodes for clauses, subterms/literals,
and symbols. Relationships among the objects are represented by various graph edges, which
allow the network to distinguish different symbols while abstracting from their names.

The GNN layers perform message passing across the edges, so the information at every
node can get to its neighbors. This allows the network to see how the symbols are used
without knowing their names. We always classify the new clauses together with the initial
clauses which provide the context for the meaning of the anonymized symbols. During the
ATP evaluation, predictions of hundreds of generated clauses are computed at once in larger
batches, with the context given both by the initial and the processed clauses. The context
can be either fized, containing an initial segment of the initial and processed clauses, or it
can be a shifting context using a window of clauses with the best GNN evaluation.

3.4 Additional Related Techniques

GPU Server Mode allows using GPUs for real-time evaluation [20]. To reduce the GPU
overhead of model loading, we developed a Python GPU server, with preloaded models that
can distribute the evaluation over several GPUs. E Prover clients communicate with the
server via a network socket. We fully utilize our physical server® when we run 160 instances
of E prover in parallel. Running both the server and clients on the same machine reduces
the network communication overhead.

Leapfrogging addresses the problem of evolving context when new given clauses are
selected [10]. We run ENIGMA with a given abstract limit and generate a larger set of clauses.
Then we run a premise selection on these generated clauses (e.g., only processed clauses),
take the good clauses, and use them as input for a new ENIGMA run. A related split/merge
method involves repeatedly splitting the generated clauses into components that are run
separately and then merged with premise selection. This is inspired by the idea that harder
problems consist of components that benefit from such divide-and-conquer approaches.

Deepire is an extension [51,52] of Vampire [37] by machine-learned clause selection
guidance, generally following the ENIGMA-style methodology. It is distinguished by its
use of recursive neural networks for classifying the generated clauses based solely on their
derivation history. Thus Deepire does not attempt to read “what a clause says”, but only

3 36 hyperthreading Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz cores, 755 GB of memory, and 4
NVIDIA GeForce GTX 1080 Ti GPUs.

J. Jakubuv et al.

bases its decisions on “where a clause is coming from”. This allows the clause evaluation to
be particularly fast, while still being able to recognize and promote useful clauses, especially
in domains with distinguished axioms which reappear in many problems.

4 Learning Premise Selection From the MML

When an ATP is used over a large ITP library, typically only a small fraction of the facts are
relevant for proving a new conjecture. Since giving too many redundant premises to the ATP
significantly decreases the chances of proving the conjecture, premise selection is a critical
task. The most efficient premise selection methods use data-driven or machine-learning
approaches. If T is a set of theorems with their proofs and C' is a set of conjectures without
proofs, the task is to learn a (statistical) model from T, which for each conjecture ¢ € C will
rank (or select a subset of) its available premises according to their relevance for producing
an ATP proof of ¢. Two main machine learning settings can be used. In Multilabel
classification, premises used in the proofs are treated as opaque labels and a machine
learning model is trained to label conjectures based on their features. Binary classification
aims to recognize pairwise-relevance of the (conjecture, premise) pairs, i.e. to estimate the
chance of a premise being relevant for proving the conjecture based on the features of both
the conjecture and the premise.

The first setting is suitable for simpler, fast ML methods, like k-NN or Naive Bayes — these
are described in Section 4.1. The second setting (Section 4.2) allows using more powerful
ML architectures, like GBDTs and GNNs (Sections 3.3 and 3.2). However, this setting also
requires selecting negative examples for training [41], which increases its complexity.

4.1 Multilabel Premise Selection (IC, N/, R)

Naive Bayes and k-nearest neighbors were the strongest selection methods in the Mizar40

evaluation [32]. In this work, we improve them and apply them together with newer methods.

k-NN (K). The k-nearest neighbours algorithm, when applied to premise selection, chooses
k facts closest to the conjecture in the feature space and selects their dependencies. Already
known modifications of the standard k-NN include considering the number of dependencies
(proofs with more dependencies are longer and thus less important) and TF-IDF (rare features
are more important) [30]. Additionally, we realize that we do not need to fix the k. Instead,
we consider a small k£ and if the number of scored dependencies is too low, we increase the k
and update the dependencies. This is repeated until the requested number of predictions
is obtained. The k-NN-based predictions with fixed k will be denoted, e.g., by K5, while
with variable k this will be K& where fea specifies the features used.

Naive Bayes (N). The sparse Naive Bayes algorithm estimates the relevance of a fact F'
by the conditional probability of F' being useful (estimated from past proof statistics) under

the condition of the features being present in the conjecture (again estimated from statistics).

We also consider extended features of F, i.e., features of F' and features of facts proved using
F. Together with premise selection-specific weights this improves on the basic Naive Bayes
and has already been used in HolyHammer and Sledgehammer. A complete derivation of the
algorithm is given in [6]. The Naive Bayes predictions will be denoted Ney.

These algorithms can be parametrized by more complex features. We considered: cp for
constants and paths (Section 3.2) in the term graph, sub for subterms, au for anti-unification
features [33], eni for online ENIGMA features discussed in Section 3.2 and uni for the union

19:7

ITP 2023

19:8

MizAR 60 for Mizar 50

of all above. Finally, these algorithms also support the chronological mode, which in the
learning phase discards proofs that use facts introduced after the current conjecture in the
Mizar canonical order (MML.LAR). This slightly weakens the algorithms, but is compatible
with the previous Mizar40 premise selection evaluation [32]. These will be marked by #rone.

Dependent Selection with RNNs (R). Premise selection methods were originally mainly
based on ranking the facts independently with respect to the conjecture. The highest ranked
facts are then used as axioms and given to the ATP systems together with the conjecture.
Such approaches (used also with GBDTs), although useful and successful, do not take into
account that the premises are not independent of each other. Some premises complement each
other better when proving a particular conjecture, while some highly-ranked premises might
be just minor variants of one another. Recurrent neural network (RNN) encoder-decoder
models [9] and transformers [60] (language models) turn out to be suitable ML architectures
for modeling such implicit dependencies. Such models have been traditionally developed for
natural language processing, however, recently they are also increasingly used in symbolic
reasoning tasks [12,16,38,43,61], including premise selection [42].

4.2 Premise Selection as Binary Classification (£, G)

Gradient Boosted Decision Trees (£). We use GBDTs (LightGBM) also for premise
selection in the binary mode. They are faster to train than the deep learning methods,
perform well with unbalanced training sets, and handle well sparse features. We fix the
Light GBM hyperparameters here based on our previous experiments with applying GBDTs
to premise selection [41]. In the binary setting, the GBDT scores the pairwise relevance
of the conjecture and a candidate premise. Because the number of possible candidates
is large (all preceding facts in the large ITP library), we first use the cheaper k-nearest
neighbors algorithm to pre-filter the available premises. The predictions from Light GBM
will be denoted as £ below.

Dependent Selection with GNNs (G). The message-passing GNN architecture described
in Section 3.3 can also be applied to premise selection. Like RNNs; it can also take into
account the dependencies between premises. As the GNN is relatively slow, we will use it
in combination with a simpler premise selection method, such as k-NN, preselecting 512
facts. We will denote GNN predictions by G below. Both £ and G, can be indexed with the
threshold on the score (like £, or G_;), used to differentiate useful and useless clauses.

4.3 Ensemble Methods for Premise Selection (£)

There are several ways how we can combine the premise selection methods discussed in
previous subsections. Naturally, using different methods for different strategies works well,
however, we also found that combining the predictions obtained from several methods and
using them for a single prover run gives good and complementary results. Since prediction
scores resulting from different algorithms are often incomparable [40], we only use the rankings
produced by the various methods and based on this we create a combined ranking. We have
compared several ways to combine rankings in previous work [30] and found that several
averages work well: arithmetic mean, minimum, and geometric mean, with the harmonic
mean giving experimentally the best results. Additionally, we add weights to the different
combined methods. The weights give more priority to a stronger prediction method, but
allow it to benefit from the simpler ones overall (by picking up some lost facts). Given

J. Jakubuv et al.

predictions from n different methods and method weights wy, . .., w,, assume that a fact has
been ranked as r1-th by the first method until and r,-th by the last one. Then, the ensemble
method would give that fact a score of 1/ | . The scores of the facts obtained in this
way are sorted, to get a ranking of all facts. The ensemble predictions will be denoted by &,
with methods and their weights in the super and subscript, for example E(IJC_ éjg{(’f%’o.a

4.4 Subproblem Based Premise Minimization (M)

The proof dependencies obtained by successful ATP runs typically perform better as data for
premise selection than the dependencies from the human-written ITP proofs [7,31]. However,
some Mizar proofs are hundreds of lines long and it is so far unrealistic to raise the 75 % ATP
performance obtained here in the bushy setting to a number close to 100 %. This means that
if we used only ATP-based premise data, we would currently miss in the premise selection
training 25 % of the proof dependency information available in the MML.

To remedy that, we newly use here subproblem based premises. The idea behind this is
that a theorem with a longer Mizar proof consists of a series of natural deduction steps that
typically have to be justified. Once ATP proofs of all such steps (we call them subproblems)
for a given toplevel theorem are available, they can be used to prune the (overapproximated)
set of human-written premises of the theorem. Such minimization also increases the chance
of proving the theorem directly. In more detail, we consider the following approaches: (1)
Use the premises from only ATP-proved subproblems, ignoring unproved subproblems. (2)
Add to (1) all explicit Mizar premises of the theorem (possibly ignoring some background
facts). (3) Add to (2) also the (semi-explicit) definitional expansions detected by the natural
deduction module. (4) Add to (3) also some of the background premises, typically those
ranked high by the trained premise selectors. When using (1) and (3), we were able to prove
more than 1000 hard theorems (see Table 1 in Section 6.1). We also use (3) as additional

proof dependencies for ATP-unproved theorems when training premise selectors (Section 6.2).

5 Strategies and Portfolios

Strategies. E, ENIGMA, Vampire and Deepire are parameterized by ATP strategies and
their combinations. While ENIGMA-style guidance typically involves the application of a
larger (neural, tree-based, etc.) and possibly slower statistical model to the clauses, standard
ATP strategies typically consist of much faster clause evaluation functions and programs
written in a DSL provided by the prover. Such programs can again be invented and learned
in various ways for particular classes of problems. For the experiments here we have used
many ATP strategies invented automatically by the BliStr/Tune systems [26,27,57]. They
implement feedback loops that interleave targeted parameter search on problem clusters using
engines like ParamlILS [23], with a large-scale evaluation of the invented strategies used for
evolving the problem clustering. Starting from few strategies, BliStr/Tune typically evolve
each strategy on the problems where the strategy performs best. During our experiments
with the systems we have developed several thousand E Prover strategies, many of them
targeted to Mizar problems. Some of these are mentioned in the experiments in Section 6.

Robust Portfolios. Larger AI/TP systems and metasystems rely on portfolios [53] of
complementary strategies that attack the problems serially or in parallel using a global time
limit. In the presence of premise selection and multiple ATPs, such portfolios may consist of
tens to hundreds of different methods. The larger the space of methods, the larger is the
risk of overfitting the portfolio during its construction on a particular set of problems. For

19:9

ITP 2023

19:10

MizAR 60 for Mizar 50

example, naive construction of “optimal” portfolios by using SAT solvers for the set-cover
problem (where each strategy covers some part of the solution space) often leads to portfolios
that are highly specialized to the particular set of problems. This is mitigated in more robust
methods such as the greedy cover, however, the overfitting there can still be significant. E.g.,
a 14-strategy greedy cover built in the Mizard0 experiments [32] solved 44.1 % of the random
subset used for its construction, while it solved only 40.6 % of the whole MML, i.e., 8 % less.
To improve on this, we propose a more robust way of portfolio construction here, based
again on the machine-learning ideas of controlling overfitting. Instead of simply constructing
one greedy cover C' (with a certain time budget) on the whole development set D and
evaluating it in the holdout set H, we first split D randomly into two equal size halves D,
and Dy. Then we construct a greedy cover C; only on D;, and evaluate its performance
also on Dy and the full set D. This is repeated n times (we use n = 1000), which for large
enough n typically guarantees that the greedy cover Ci will for some of the random splits
D%, Di overfit very little (or even underfit). This can be further improved by evaluating the
best (strongest and least overfitting) covers on many other random splits and selecting the
most robust ones. We use this in Section 6 to build a portfolio that performs only 3.5 %
worse on the (unseen) holdout set than on the development set used for its construction.

6 Experiments and Results

6.1 Bushy Experiments and Timeline

The final list of all 43717 Mizar problems proved by ATPs in our evaluation is available on
our web page.? The approximate timeline of the methods and the added solutions is shown
in Table 1. This was continuously recorded on our web page,® which also gives an idea of
how the experiments progressed and how increasingly hard problems were proved.

The large evaluation started in April 2020, as a follow-up to our work on ENIGMA
Anonymous [25]. By combining the methods developed there and running with higher time
limits, the number of problems proved by ENIGMA in the bushy setting reached 65.65 % in
June 2020. This was continued by iterating the learning and proving in a large Malarea-style
feedback loop. The growing body of proofs was continuously used for training the graph
neural networks and gradient boosted guidance, which were used for further proof attempts,
combined with different search parameters and later used also for training premise selection.

This included many grid searches on a small random subset of the problems over the
thousands of differently trained GNNs and GBDTs corresponding to the training epochs,
and then evaluating the strongest and most complementary ENIGMAs using the differently
trained GNNs and GBDTs on all, or just hard (the so far ATP-unproved), problems. The
total number of the saved snapshots of the GNNs corresponding to the training epochs and
usable for the grid searches and full evaluations reached 15920 by the end of the experiments
in September 2021.% The longest GNN training we did involved 964 epochs and 12 days on a
high-end NVIDIA V100 GPU card.” The GNN training occasionally (but rarely) diverged
after hundreds of epochs, which we handled by restarts.

http://grid01.ciirc.cvut.cz/~mptp/00proved_20210902
https://github.com/aidreason/ATP_Proofs

For the grid searches, this was compounded by further parameters of the ENIGMA and E strategies.
We generally use the same GNN hyper-parameters as in [25,39] with the exception of the number of
layers that varied here between 5 and 12, providing tradeoffs between the GNN’s speed and precision.

- IS

http://grid01.ciirc.cvut.cz/~mptp/00proved_20210902
https://github.com/ai4reason/ATP_Proofs

J. Jakubuv et al.

Table 1 Timeline of the experiments. B are standard bushy premises, M are subproblem-
minimized premises, G, £, and K are GNN/Light GDB/kNN-based premises, and £ their ensembles.

solved (%] date premises methods/notes

38k 65.65 Jun 2020 B ENIGMA, reported on July 2nd at IJCAR’20®

40268 69.57 Oct 2020 B ENIGMA

40994 70.83 Nov 12 M ENIGMA, heuristic premise minimization

41169 71.13 Nov 12 M Vampire with 300s limit adds 175

41792 7220 Nov 27 M E/ENIGMA /Vampire with more premise minimization
42206 72.92 Dec 7 M E/ENIGMA /Vampire with more premise minimization
42471 73.38 Jan 6 g, & E with BliStr/Tune strategies on G, £ premises

42519 73.46 Jan 10 many ENIGMA runs on all training predictions

42826 73.99 May 14 Gg,LK Vampire/Deepire runs — FroCoS’21 [52]

43414 75.01 Jul 26 M.B 2,3-phase ENIGMA, leapfrogging

43524 75.20 Aug 21 M 3-phase ENIGMA, shifting context, leapfrog., fwd subsump.
43599 75.33 Aug 26 L 3-phase ENIGMA, leapfrogging, fwd. subsumption
43717 75.53 Sep 2 M mainly Vampire/Deepire

The total number of proofs that we trained the ENIGMA guidance on eventually reached
more than three million, which in a pickled and compressed form take over 200 GB. Since
the full data do not fit into the main memory of even large servers equipped for efficient
GPU-based neural training, we have programmed custom pipelines that continuously load,
mix and unload smaller chunks of data used for the ENIGMA training. For many problems,
we obtained hundreds of different proofs, while for some problems we may have only a single
proof. This motivated further experiments on how and with what frequency the different
proofs should be represented in the training data. This was a part of the larger task of
training data nmormalization, which included, e.g., removing or pruning very large proof
searches in the training data that would cause memory-based GPU crashes.

The 75 % milestone was reached on July 26 2021° by using the freshly developed 2 and
3-phase ENIGMAs, together with differently parameterized leapfrogging (Section 3.4) runs.
The strongest single 3-phase ENIGMA strategy has reached 56.4 % performance in 30s on
the bushy problems when trained and evaluated in a rigorous train/dev/holdout setting [20].
This best ENIGMA uses a parental threshold of 0.01, 2-phase threshold of 0.1, and context
and query sizes of 768 and 256. Its (server-based) GNN has 10 layers trained on at most
three proofs for each problem in the training set. See also Section 6.6 for its evaluation on a
set of completely new 13370 problems in 242 new articles of a later version of MML.

6.2 Training Data for Premise Selection

After several months of running the learning/proving loop in various ways on the problems,
we used the collected data for training premise selection methods. In particular, at that
point, there were 41 504 ATP-proved problems for which we typically had many alternative
proofs and sets of premises, yielding 621642 unique ATP proof dependencies. Since in the
hammering scenarios we can also analyze the human-written proofs and learn from them, we
have added for each ATP-unproved problem P its premises obtained by taking the union of

8 https://youtu.be/Xoj0EpZfHAY7t=673
9 https://github.com/aidreason/ATP_Proofs/blob/master/75percent_announce.md

19:11

ITP 2023

https://youtu.be/XojOEpZfH4Y?t=673
https://github.com/ai4reason/ATP_Proofs/blob/master/75percent_announce.md

19:12

MizAR 60 for Mizar 50

the ATP dependencies of all subproblems of P. In other words, we use subproblem-based
premise minimization (Section 4.4) for the remaining hard problems. This adds 16651
examples to the premise selection dataset. This dataset of 638 293 unique proof dependencies
is then used in various ways for training and evaluating the premise selection methods on
MML. In comparison with the Mizar40 experiments this is about six times more proof data.
As usual in machine learning experiments, we also split the whole set of Mizar problems into
the training, development, and holdout subsets, using a 90 : 5 : 5 ratio. This yields 52125
problems in the training set, 2896 in devel, and 2896 in the holdout set.

6.3 Training the Premise Selectors

We first train kNN and naive Bayes in multiple ways on the training subset using the different
features (Section 4.1) and their combinations. For training the GNN and Light GBM, we first
use kNN-based pre-selection to choose 512 most relevant premises for each problem. When
training, we add for each example its positives (the real dependencies) and subtract them
from the 512 premises pre-selected by kNN, thus forming the set of the negatives for the
example. The GNN and LightGBM are thus trained to correct the mistakes done by kNN
(a form of boosting). When predicting, this is done in the same way, i.e., first we use the
trained kNN to preselect 512 premises which are then ranked by the GNN/Light GBM. We
use both score thresholds (e.g., including all premises with score better than 0, —1 or —3),
and fixed-sized slices as in other premise selection methods. With the same best version of
ENIGMA, the strongest GNN-based predictor (G_;) solves 1089 problems compared to 870
solved when using the baseline kNN, which is a large (25.2 %) improvement. The GNN also
outperforms Light GBM, which overfits more easily on the training data. Table 2 shows the
performance on the devel and holdout sets of the main methods used in the evaluation.

6.4 ENIGMA Experiments on the Premise Selection Data

First, to train ENIGMA on the premise selection problems, we perform several prove/learn
iterations with ENIGMA/GBDT on our premise slices. In loop (1), we start with three
selected slices G_;, L 1, and K¢y, which were found experimentally to be complementary. We
evaluate strategy S; (blsOf17) on the three slices obtaining 20 604 proved training problems.
We train several decision tree (GBDT) models with various learning hyperparameters (tree
leaves count, tree depth, ENIGMA features used). We use all the training proofs available.
In loop (2), we evaluate several ENIGMA models trained on B (bushy problems) to obtain
additional training data. After few training/evaluation iterations, the training data might
start accumulating many proofs for some (easier) problems solved by many strategies. From
loop (2) on, we, therefore, use only a limited number of proofs per problem. We either select
randomly up to 6 proofs for each problem, or we select only specific proofs (e.g., the shortest,
longest, and one medium-length proof). In loop (3), additional training data are added by
ENIGMA /GNN runs on the premise slices, with GNN trained on the GBDT runs. In loop
(4), we consider training data from 7 additional slices (variants of G, £, K), obtained by
running ENIGMA models trained of bushy problems. In loop (5), we extend the training data
with bushy proofs of unsolved training problems obtained by our various previous efforts.
Starting from 1215 solved development problems, we ended up with 1735 problems solved
after the fifth iteration. While we train GBDT models only on few selected slices, we evaluate
the models on many more, up to 56, development slices covering all families G, £, I, £, and
N. We report the increasing number of training problems (trains) and the total of number
of solved development problems by all the evaluated strategy /slice pairs (devel union). Since
every strategy/slice pair is evaluated in 10 seconds, we construct the greedy cover of best 42

J. Jakubuv et al.

Table 2 Machine learning evaluation of the premise selection models on the Development and
Holdout datasets. Note that the evaluation of GNN is presented here only for completeness, in
practice we use it with a score-based threshold and fewer premises.

Model 100-Cover 100-Prec Recall AUC Avg. Rank
D H D H D H D H D H
Kb 83.3 823 8837 8713 386.8 4019 92.03 91.27 90.17 97.98
Ko 83.5 827 8855 8754 383.32 401.54 92.13 91.36 89.21 97.19
oot 82.6 81.8 8700 8596 401.89 41840 91.32 90.59 97.30 104.88
Ko, 83.6 829 8851 8.785 38231 399.10 92.19 91.39 88.53 96.84
Nep 87.8 87.0 9.739 9.665 300.49 310.72 94.77 94.32 62.64 67.51
Nau 88.0 875 9.748 9.714 298.66 307.82 94.84 9444 61.99 66.31
Nmi 83.3 835 9.358 9.367 382.87 379.24 92,53 9241 85.39 86.88
Nso 88.3 875 9.776 9.720 299.10 308.67 94.85 9441 61.85 66.60
MNmichrono 83.9 827 9.151 9.010 384.68 393.37 92.33 91.75 87.23 93.27
L 82.9 83.1 9.077 9.090 410.06 408.06 91.53 91.26 95.11 97.74
g 87.4 86.3 9.408 9.282 241.22 249.32 8845 87.42 66.69 71.87
Eg{{’;&avg 87.8 871 9.606 9.522 291.27 304.43 95.06 94.53 59.81 65.47
Sgi’;&geo 89.4 887 9.806 9.733 277.75 288.53 95.53 95.04 55.13 60.27

VK b 894 889 9822 9780 27634 286.23 9553 9508 55.06 59.94
ENK emn 890 884 9753 9707 279.88 280.41 9537 9495 56.70 61.19
NG, 921 911 10.237 10160 228.79 24816 96.64 96.20 44.06 48.76
VSS9 925 915 10207 10219 210.31 227.74 96.93 96.56 41.20 45.17

&% 55 913 904 10.091 10.014 261.10 272.85 96.20 95.71 4851 53.64

strategy/slice pairs, to approximate the best possible result obtainable in 420s (see columns
devel cover). Since the development set has not been used in any way to train the GBDT
models, we can see this as an approximation of the best possible result on the holdout set.

We reach 55.59 % of problems solvable in 420's, only with ENIGMA /GBDT models. To
compare this result to other methods, we construct compatible greedy covers for E Prover in
auto-schedule mode, and for Vampire in CASC mode, that is, in their respective strongest
default settings. We evaluate both provers on all 56 development slices, with 30s limit per
problem. For each prover, we construct a greedy cover of best 14 slices, again approximating
the best possible result obtainable in 420s. BliStr/Tune is our previously invented portfolio
of 15 E strategies for Mizar bushy problems. We evaluate all 15 strategies on all 56 slices
with 2 seconds per problem. Similarly, the greedy cover of length 210 is constructed. The
column pairs specifies the greedy cover length considered in each case. The time limit for
each strategy/slice pair is 420/pairs.

The training data obtained in five loops were finally used to train new ENIGMA/GNN
models for premise selection slices. Various GNN models were trained (various numbers
of layers, networks from various epochs) and evaluated with the limit of 5s. As before,

we construct the greedy cover of length 84 to simulate the best possible run in 420s.

ENIGMA /GNN performs even better then ENIGMA /GBDT, solving 57.66 % problems. The
two ENIGMA /* portfolios cover together 1701 development problems (in 840s), suggesting
a decent complementarity of the methods. Note that only the ENIGMA /GBDT strategies

can cover up to 1735 (see column devel on the left), which is 59.9 % of the development set.

19:13

ITP 2023

19:14

MizAR 60 for Mizar 50

Table 3 Training of ENIGMA/GBDT models (left), and best covers of development set (right).

loop trains devel devel cover
(union) (in 420s) [%] prover (4205s) cover pairs [%]

init 20604 1215 - - E 2.6 (auto-schedule) 1430 14 49.38
(1) 25240 1601 1516 52.33 Vampire 4.0 (CASC) 1536 14 53.03
(2) 25725 1669 1555 53.69 BliStr/Tune 1582 210 54.62
(3) 25887 1679 1560 53.88 ENIGMA/GBDT 1610 42 55.59
(4) 29266 1716 1591 54.94 ENIGMA /GNN 1670 84 57.66
(5) 37053 1735 1610 55.59

Most of our ENIGMA models are combined with the baseline strategy bls0f17. This
together with blsO5fc are two strategies invented by BliStr/Tune [24] which perform well on
premise selection data. We additionally use another two older BliStr [57] strategies mzr02
and mzr03 which perform well on bushy problems. We usually combine training data only
from strategies with compatible term ordering and literal selection setting. However, data
from strategies with incompatible orderings, were found useful when used in a reasonably
small amounts. Few other BliStr and Vampire strategies, together with E in the auto mode,
are used to gather additional solved development problems. With all our methods (ENIGMA
& BliStr/Tune) and with additional Vampire runs of selected strategies, we have solved more
than 62.7 % development problems. These results provide training data for the construction
of the final holdout portfolio, as described in the next section.

6.5 Final Hammer Portfolio

With the large database of the development results of the systems run on the premise slices,
we finally construct our ultimate hammering portfolio. For that, we use the robust portfolio
construction method described in Section 5. In particular, we randomly split the development
set into two equal-sized parts, and compute the 420 s greedy cover using our whole database of
results on the first part. This greedy cover is evaluated on the second part, thus measuring the
overfitting. This randomized procedure is repeated one thousand times. Then we (manually)
select the 20 strongest and least overfitting portfolios and evaluate each of them on 80 more
random splits, thus measuring how balanced they are on average. Typically, they reach up
to 60.5 % performance on the whole devel set, so we choose a threshold of 59.5% on the 160
random halves to measure the imbalance. The most balanced portfolio wins with 135 of the
160 random halves passing the threshold.

This final 420-second portfolio has 95 slices that solve 1749 (60.4 %) of the devel problems
and 1690 (58.36 %) of the holdout problems. Table 4 shows the initial segment of 13 slices of
this portfolio with the numbers of problems solved. The full portfolio is presented in Table 5.
The first number ¢ is the number of seconds to run the slice. The base column specifies the
ATP strategy used, and ENIGMA describes what kinds of ENIGMA models are used (if any).
We can see that GNN models dominate the schedule with fast runs. The schedule is closed by
longer runs, notably also GBDT models, which while evaluated in a single-CPU setting, need
several seconds to load the model. This means that we are favoring the GNN ENIGMAs
thanks to the use of the preloaded GNN server, and a further improvement is likely if we
also preload the GBDT models. Our single strongest GNN-based strategy solves 1178 of the
holdout problems in 30s using the G_; predictions. This is 39.5 %, which is only 1.1 % less
than the 40.6 % solved by the full 420s portfolio constructed in the Mizar40 experiments.

J. Jakubuv et al.

Table 4 The 13-slice prefix of the final portfolio of the 95 slices. Each column presents the premise
selection method, the ATP method, and the number of problems solved up this slice cumulatively
on the development and holdout sets. “V” stands for Vampire and “GNN” is ENIGMA /GNN model
based on bls0f17. Moreover, E509; = Sjg”;ggl and &5 = ENK and Es33 = Eﬁigg’f%.

A5,t5,avg
g 65221 ‘C’ 5'5221 Nuni 5'5221 Afeni /\/:eni 55221 g 855 5,533 5533
GNN GNN GNN GNN V A% GNN GNN GNN GNN V \% GNN

984 1142 1215 1263 1297 1325 1346 1370 1381 1393 1405 1419 1444
1013 1157 1240 1275 1305 1321 1346 1364 1378 1386 1398 1407 1436

6.6 Transfer to MML 1382

In the final experiment, we run for 120s the best trained ENIGMA (3-phase, see Section 6.1)
on the bushy problems from a new version of Mizar (1382) that has 242 new articles and
13370 theorems in them. ENIGMA not only never trained on any of these articles, but also
never saw the new terminology introduced there. We also run the standard E auto-schedule
for 120s on the new version. ENIGMA proves 37094 (52.7%) of the 70396 problems in
the new library, while the E auto-schedule proves 24 158 (34.32 %) of them. ENIGMA thus
improves over E by 53.55 % on the new library. We compare this with the old MML, where
the trained ENIGMA solves 34528 (59.65 %) of the 57880 problems, and E solves 22119
(38.22%), i.e., the relative improvement there is 56.10 %.

Surprisingly, just on the new 13370 theorems — more than half of which contain new
terminology — the ratio of ENIGMA-proved to E-proved problems is 5934 to 3751, i.e.,
ENIGMA is here better than E by 58.20 %. These numbers show that the performance
of our anonymous [25] logic-aware ML methods, which learn only from the structure of
mathematical problems, is practically untouched by the transfer to the new setting with
many new concepts and lemmas. This is quite unusual in today’s machine learning which
seems dominated by large language models that typically struggle on new terminology.

7 Proofs

As the main experiments progressed from spring 2020 to summer 2021, we have collected
interesting examples of automatically found proofs and published their summary descriptions
on our web page.l® As of September 2021 there were over 200 of such example proofs,
initially with ATP length in tens of clause steps, and gradually reaching hundreds of clause
steps. Initially these were proofs found in the bushy setting, with proofs done in the chainy
(premise-selection) setting added later, typically to show the effect of alternative premises.

One of the earliest proofs that we put on the web page & is NEWTON:72 @ proving that
for every natural number there exists a larger prime:

for 1 being Nat ex p being Prime st p is prime & p > 1

The ENIGMA proof @ starts from 328 preselected Mizar facts which translate to 549 initial
clauses. The search is guided by a particular version of the GNN running at that time
(April 2020) on the CPU. Since this is relatively costly, the proof search generated only
2856 nontrivial clauses in 6, doing 734 nontrivial given clause loops. The final proof takes
83 clausal steps, and uses 38 of the 328 initially provided steps. Many of them replay the

Oyttps://github. com/aidreason/ATP_Proofs

19:15

ITP 2023

https://bit.ly/3Spmf26
https://bit.ly/3ILEkEp
https://bit.ly/3Z2iXo3
https://github.com/ai4reason/ATP_Proofs

19:16

MizAR 60 for Mizar 50

Table 5 The final Mizar hammer portfolio for 420s.

t base ENIGMA slice
2 blsOf17 GNN G4
2 blsOf17 GNN N
2 bls0f17 GNN L
2 blsOfl7 GNN £5°555
2 vampire - Nuni
2 vampire - 5{53%
2 blsOf17 GNN Neni
2 bls0fl7 GNN N
2 blsOf17 GNN 58S
2 blsOf17 GNN gj_\;
2 vampire - EL's
2 vampire - 5,@135’?25
5 blsOfl7 GNN NG
2 vampire - 5?’,’;
2 vampire - KCai
2 mzr02 - /C\C,gr
2 blsOf17 GNN Go
2 vampire-16 - G s
2 vampire - Nimi
2 bis0fl7 GNN Nomi
5 blSOfl? GNN au
2 vampire - 5.?(?
2 vampire - ngfg
5 blsOfl7 GNN VK
2 blsOf17 GNN gy
2 vampire-16 - Eg’;ggl
5 blSOfl? GNN 50'05
2 vampire-18 - g
2 mzr22 - 5{5?
. NI
2 vampire - &5 geo
2 vampire - 5{!?[5(3
2 vampire - ;,;r
2 BliStr-edc9 - E355
2 vampire - g,.gf,il;j,chronn
2 vampire - uni
5 blsOf17 GNN 5@?25{?25
10 mzr02 GNN ERF
5 blsOf17 GNN &S
5 blsOfl7 GNN Nau
2 plsOfl7 - GNN éfa
vampire- -
2 vampire-16 - -/\},'Gu
2 vampire - /\/:u
2 E-auto - 96
10 bISOSfC GBDT LR/'QS
2 vampire - 5.5,’.I5C,mm
2 vampire-16 - sub
2 vampire-16 - 5.5,?25),?25

t base ENIGMA slice

2 vampire - ggfgé)f%
2 Blistr-5fce - gjgfgcg

2 vampire - g.jg,'f

2 E-auto - —2.

2 vampire - Kiar

2 vampire-16 - 5/;)/3);

2 vampire - 5gt§geo
2 vampire - Kiar

2 vampire-21 -

2 vampire - Noub

2 vampire - uni

2 E-auto - 5.@/’25},?25
2 vampire - 5{5\—,/:'.’5,C,mm
2 vampire - cp,

2 blsOf17 GNN Kear

5 bls0f17 GNN ﬁx{o&

10 blsO5fc GBDT &395% .,
5 blsOfl7 GNN EVE

5 blsOfl7 GNN Neni

5 blsOfL7 GNN EX 9 s
10 blsOfL7 GNN gy AL
10 mzr03 GBDT g%

10 blsO5fc GBDT &395% .,
10 mzr02 GBDT Kﬁ}]‘gt

10 blsOfL7 GNN A
10 blsOfL7 GNN gy L
5 blsOfl7 GNN Now

5 blsOf17 GNN ERIOOS

10 blsOf17 GNN £35S
5 blsOf17 GNN Loy 01

5 bls0fl7 GNN /\?ﬁ#

5 blsOf17 GNN eNE

5 mzr03 - 5_/;@,)?2’5?,’25,.25
10 blsOf17 GNN 1

5 blsOf17 GNN G

10 blsO5fc GBDT Konon

5 blsOfl7 GNN No

5 blsOfl7 GNN s

10 blsOf17 GNN 5

10 blsOf17 GNN eni

10 blsOf17 GBDT 5_57j5,&min
10 bls0f17 GNN Nan

10 blsOf17 GNN vk

10 blSOfl? GNN au

10 mzr03 GBDT 5%?5?,.33

arithmetical arguments done in Mizar. An interesting point is that the guided prover is here

capable of synthesizing a nontrivial witness (n! + 1) by using the supplied facts, after which

the proof likely becomes reasonably straightforward given the knowledge in the library (see

the Appendix for a more detailed discussion of this example). In general, using the supplied

facts together with the trained learner for guided synthesis of nontrivial witnesses seems to
be one of the main improvements brought by the ENIGMA guidance that contributed to
the new proofs in comparison with the Mizar40 evaluation. This led us to start research of
neural synthesis of witnesses and conjectures for AI/TP settings [13,16,17,58].

J. Jakubuv et al.

Arithmetical reasoning, and other kinds of “routine computation” in general, have turned
out to be areas where ENIGMA often gradually improved by solving increasingly hard Mizar
problems and learning from them. Such problems include reasoning about trigonometric
functions, integrals, derivatives, matrix manipulation, etc. From the more advanced results
done by 3-phase ENIGMA, this is, e.g., a 619-long proof of SINC0S10:86 ¢ found in 60s,
doing a lot of computation about the domain and range of arcsec ¢7 , and a 326-long proof of
FDIFF_8:14 ¢, found in 31s, about the derivative of tan(lnx) ¢ .

for x being set st x in [.(- (sqrt 2)),(- 1).] holds arcsec2 . x in [.((3 / 4) * PI),PI.]

for Z being open Subset of REAL st Z c= dom (tan * 1ln) holds tan * 1n
is_differentiable_on Z
& for x being Real st x in Z holds ((tan * 1n) ‘| Z) . x =1/ (x * (cos . (In . x))72)

The first proof uses 83 Mizar facts, starting with 1025 preselected ones. Its proof search took
5344 nontrivial given clauses and generated over 100k nontrivial clauses in total, making the
3-phase filtering and the use of the GPU server essential for finding the proof efficiently. The
second proof uses 55 Mizar facts, 3136 given clause loops and it generated 26.6k nontrivial
clauses. The reader can see on our web page that there are many solved problems of such
“mostly computational” kind, suggesting that such learning approaches may be suitable
for automatically gaining competence in routine computational tasks, without the need to
manually program them as done, e.g., in SMT solvers. This has motivated our research
in learning reasoning components [10]. Two less “computational” but still very long ATP
proofs found by 3-phase ENIGMA are BORSUK_5:31 7 saying that the closure of rationals
on (a,b) is [a,b] @, and IDEAL_1:22 & saying that commutative rings are fields iff ideals are
trivial ¢ :

for A being Subset of R™1 for a, b being real number

st a <b & A = RAT (a,b) holds C1 A = [.a,b.]

for R being non degenerated comRing holds R is Field iff
for I being Ideal of R holds I = {(0. R)} or I = the carrier of R

The Mizar proof of BORSUK_5:31 takes 80 lines. ENIGMA finds a proof from 38 Mizar facts
that uses 359 clausal steps in 4883 given clause loops. On the 400k generated clauses, the
multi-phase ENIGMA mechanisms work as follows. 133 869 clauses are frozen by parental
guidance, 83 871 are then filtered by aggressive subsumption, and 64 364 by the first-stage
Light GBM model. 125489 remaining “good” clauses are gradually evaluated (in 176 batched
calls) by the GNN server, using a context of 1536 processed clauses. The ENIGMA proof of
IDEAL_1:22 uses 48 Mizar facts and takes 493 clausal steps in 4481 given clause loops.

One example of an ATP proof made possible thanks to the premise selector noticing
alternative lemmas in the library is FIB_NUM2:69 ¢ . This theorem, called in the MML
“Carmichael’s Theorem on Prime Divisors”, states that if m divides the n-th Fibonacci
number (Fib n), then m does not divide any smaller Fibonacci number, provided m,n are
prime numbers @@ . The Mizar proof has 122 lines, uses induction and we cannot so far replay
it with ATPs. The premise selector, however, finds a prior library lemma FIB_NUM:5 7
saying that (Fib m) gcd (Fib n) = Fib (m gcd n), from which the proof follows, using
159 clausal steps, 4214 given clause loops and 32 Mizar facts. Finally, an example of a long
Deepire proof i using a high time limit is ORDINAL5:36 7 , i.e., the g = w*~ formula for
the zeroth epsilon ordinal ¢ :

first_epsilon_greater_than O = omega |~|~ omega

The search took 38 065 given clause loops and 504 s. The proof has 1193 clausal steps, using

49 Mizar facts. Deepire’s very efficient neural guidance took only 18s of the total time here.

19:17

ITP 2023

https://bit.ly/3StOHzV
https://bit.ly/2YZ0OgX
https://bit.ly/3IuYHV0
https://bit.ly/3SdZjTq
https://bit.ly/3KzuPJY
https://bit.ly/3C0Lwa8
https://bit.ly/3Z7UPQC
https://bit.ly/3BWqR6K
https://bit.ly/3YWIfE6
https://bit.ly/3oGBdRz
https://bit.ly/3ExtvmS
https://bit.ly/3klDrJr
https://bit.ly/3SrPyRN
https://bit.ly/3SozGPM

19:18

MizAR 60 for Mizar 50

8 Conclusion: Al/TP Bet Completed

In 2014, after the 40 % numbers were obtained by Kaliszyk and Urban both on the Flyspeck
and Mizar corpora, the last author publicly announced three AI/TP bets'! in a talk at
Institut Henri Poincare and offered to bet up to 10000 EUR on them. Part of the second
bet said that by 2024, 60 % of the MML and Flyspeck toplevel theorems will be provable
automatically when using the same setting as in 2014. In the HOL setting, this was done as
early as 2017/18 by the TacticToe system, which achieved 66.4 % on the HOL library in 60s
and 69 % in 120s [14,15]. One could however argue that TacticToe introduced a new kind of
ML-guided tactical prover that considerably benefits from targeted, expert-written procedures
tailored to the corpora. This in particular showed in the large boost on HOL problems that
required induction, on which standard higher-order ATPs traditionally struggled.

In this work, we largely completed this part of the second AI/TP bet also for the Mizar
library. The main caveat is our use of more modern hardware, in particular many ENIGMAs
using the GPU server for clause evaluation. It is however clear (both from the Light GBM
experiments and from the very efficient and CPU-based Deepire experiments) that this is
not a major issue. While it is today typically easier to use dedicated hardware in ML-based
experiments, there is also growing research in the extraction of faster predictors from those
trained on GPUs that can run more efficiently on standard hardware.

—— References

1 Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org. URL: https://www.tensorflow.org/.

2 Jesse Alama, Tom Heskes, Daniel Kiihlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise
selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning,
52(2):191-213, 2014. doi:10.1007/s10817-013-9286-5.

3 Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Artur Kornilowicz, Roman
Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical
Library for interactive proof development in Mizar. J. Autom. Reason., 61(1-4):9-32, 2018.
doi:10.1007/s10817-017-9440-6.

4 Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Artur Kornilowicz, Roman
Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art
and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and
Volker Sorge, editors, Intelligent Computer Mathematics - International Conference, CICM
2015, Washington, DC, USA, July 13-17, 2015, Proceedings, volume 9150 of Lecture Notes in
Computer Science, pages 261-279. Springer, 2015. doi:10.1007/978-3-319-20615-8_17.

5 Grzegorz Bancerek and Piotr Rudnicki. A Compendium of Continuous Lattices in MIZAR. J.
Autom. Reasoning, 29(3-4):189-224, 2002. doi:10.1023/A:1021966832558.

"nttp://aidreason.org/aichallenges.html

https://www.tensorflow.org/
https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1023/A:1021966832558
http://ai4reason.org/aichallenges.html

J. Jakubuv et al.

10

11

12

13

14

15

16

17

18

19

20

Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kiithlwein, and Josef
Urban. A learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning, 57(3):219-244,
2016. doi:10.1007/s10817-016-9362-8.

Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Ham-

mering towards QED. J. Formalized Reasoning, 9(1):101-148, 2016. doi:10.6092/issn.

1972-5787/4593.

Tiangi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 785-794, New York, NY, USA, 2016. ACM. doi:10.1145/2939672.2939785.

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 201/, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724-1734. ACL, 2014. doi:10.3115/v1/d14-1179.

Karel Chvalovsky, Jan Jakubuv, Miroslav Olsék, and Josef Urban. Learning theorem proving
components. In Anupam Das and Sara Negri, editors, Automated Reasoning with Analytic
Tableauz and Related Methods - 30th International Conference, TABLEAUX 2021, Birmingham,
UK, September 6-9, 2021, Proceedings, volume 12842 of Lecture Notes in Computer Science,
pages 266-278. Springer, 2021. doi:10.1007/978-3-030-86059-2_16.

Karel Chvalovsky, Jan Jakubuv, Martin Suda, and Josef Urban. ENIGMA-NG: Efficient
neural and gradient-boosted inference guidance for E. In Pascal Fontaine, editor, Automated
Deduction - CADE 27 - 27th International Conference on Automated Deduction, Natal, Brazil,
August 27-30, 2019, Proceedings, volume 11716 of Lecture Notes in Computer Science, pages
197-215. Springer, 2019. doi:10.1007/978-3-030-29436-6_12.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can
neural networks understand logical entailment? In International Conference on Learning
Representations, 2018. URL: https://openreview.net/forum?id=SkZxCk-0Z.

Thibault Gauthier. Deep reinforcement learning for synthesizing functions in higher-order
logic. In LPAR, volume 73 of EPiC Series in Computing, pages 230-248. EasyChair, 2020.

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. TacticToe: Learning to reason with
HOL4 tactics. In Thomas Eiter and David Sands, editors, LPAR-21, 21st International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana,
May 7-12, 2017, volume 46 of EPiC, pages 125-143. EasyChair, 2017. doi:10.29007/ntlb.
Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish.
Tactictoe: Learning to prove with tactics. J. Autom. Reason., 65(2):257-286, 2021. doi:
10.1007/s10817-020-09580-x.

Thibault Gauthier, Miroslav Olsék, and Josef Urban. Alien coding. CoRR, abs/2301.11479,
2023.

Thibault Gauthier and Josef Urban. Learning program synthesis for integer sequences from
scratch. CoRR, abs/2202.11908, 2022.

Zarathustra Goertzel, Jan Jakubtv, and Josef Urban. ENIGMAWatch: ProofWatch meets
ENIGMA. In Serenella Cerrito and Andrei Popescu, editors, Automated Reasoning with
Analytic Tableaux and Related Methods, pages 374-388, Cham, 2019. Springer International
Publishing.

Zarathustra Amadeus Goertzel. Make E smart again (short paper). In IJCAR (2), volume
12167 of Lecture Notes in Computer Science, pages 408—-415. Springer, 2020.

Zarathustra Amadeus Goertzel, Karel Chvalovsky, Jan Jakubuv, Miroslav Olsdk, and Josef
Urban. Fast and slow Enigmas and parental guidance. In FroCoS, volume 12941 of Lecture
Notes in Computer Science, pages 173-191. Springer, 2021.

19:19

ITP 2023

https://doi.org/10.1007/s10817-016-9362-8
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1007/978-3-030-86059-2_16
https://doi.org/10.1007/978-3-030-29436-6_12
https://openreview.net/forum?id=SkZxCk-0Z
https://doi.org/10.29007/ntlb
https://doi.org/10.1007/s10817-020-09580-x
https://doi.org/10.1007/s10817-020-09580-x

19:20

MizAR 60 for Mizar 50

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Zarathustra Amadeus Goertzel, Jan Jakubuv, Cezary Kaliszyk, Miroslav Olsak, Jelle Piepen-
brock, and Josef Urban. The Isabelle ENIGMA. In ITP, volume 237 of LIPIcs, pages
16:1-16:21. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022.

Adam Grabowski, Artur Kornitowicz, and Adam Naumowicz. Mizar in a nutshell. J. Formalized
Reasoning, 3(2):153-245, 2010.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stiitzle. ParamILS: an
automatic algorithm configuration framework. J. Artificial Intelligence Research, 36:267-306,
October 2009.

Jan Jakubtv and Josef Urban. Hierarchical invention of theorem proving strategies. Al
Commun., 31(3):237-250, 2018. doi:10.3233/AIC-180761.

Jan Jakubuv, Karel Chvalovsky, Miroslav Olsak, Bartosz Piotrowski, Martin Suda, and
Josef Urban. ENIGMA anonymous: Symbol-independent inference guiding machine (system
description). In IJCAR (2), volume 12167 of Lecture Notes in Computer Science, pages
448-463. Springer, 2020.

Jan Jakubuv, Martin Suda, and Josef Urban. Automated invention of strategies and term
orderings for vampire. In GCAI, volume 50 of EPiC Series in Computing, pages 121-133.
EasyChair, 2017.

Jan Jakubuv and Josef Urban. BliStrTune: hierarchical invention of theorem proving strategies.
In Yves Bertot and Viktor Vafeiadis, editors, Proceedings of the 6th ACM SIGPLAN Conference
on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017, pages
43-52. ACM, 2017. doi:10.1145/3018610.3018619.

Jan Jakubuv and Josef Urban. Enhancing ENIGMA given clause guidance. In Florian Rabe,
William M. Farmer, Grant O. Passmore, and Abdou Youssef, editors, Intelligent Computer
Mathematics - 11th International Conference, CICM 2018, Hagenberg, Austria, August 13-
17, 2018, Proceedings, volume 11006 of Lecture Notes in Computer Science, pages 118—124.
Springer, 2018. doi:10.1007/978-3-319-96812-4_11.

Jan Jakubuv and Josef Urban. Hammering Mizar by learning clause guidance. In John
Harrison, John O’Leary, and Andrew Tolmach, editors, 10th International Conference on
Interactive Theorem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA, volume
141 of LIPIcs, pages 34:1-34:8. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019.
doi:10.4230/LIPIcs.ITP.2019.34.

Cezary Kaliszyk and Josef Urban. Stronger automation for Flyspeck by feature weighting
and strategy evolution. In Jasmin Christian Blanchette and Josef Urban, editors, PxTP 2013,
volume 14 of EPiC' Series, pages 87-95. EasyChair, 2013.

Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reasoning, 53(2):173-213, 2014. doi:10.1007/s10817-014-9303-3.

Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. J. Autom. Reasoning, 55(3):245-256,
2015. doi:10.1007/s10817-015-9330-8.

Cezary Kaliszyk, Josef Urban, and Jirf Vyskocil. Efficient semantic features for automated
reasoning over large theories. In IJCAI pages 3084-3090. AAAI Press, 2015.

Cezary Kaliszyk, Josef Urban, and Jiri Vyskocil. Automating formalization by statistical and
semantic parsing of mathematics. In ITP, volume 10499 of Lecture Notes in Computer Science,
pages 12-27. Springer, 2017.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In NIPS, pages
3146-3154, 2017.

Artur Kornitowicz and Christoph Schwarzweller. Computers and algorithms in Mizar. Mech-
anized Mathematics and Its Applications, 4(1):43-50, 2005.

Laura Kovacs and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, CAV, volume 8044 of LNCS, pages 1-35. Springer, 2013.
doi:10.1007/978-3-642-39799-8_1.

https://doi.org/10.3233/AIC-180761
https://doi.org/10.1145/3018610.3018619
https://doi.org/10.1007/978-3-319-96812-4_11
https://doi.org/10.4230/LIPIcs.ITP.2019.34
https://doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1007/978-3-642-39799-8_1

J. Jakubuv et al.

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Guillaume Lample and Frangois Charton. Deep learning for symbolic mathematics. In 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL: https://openreview.net/forum?id=S1eZYeHFDS.
Miroslav Olsék, Cezary Kaliszyk, and Josef Urban. Property invariant embedding for automated
reasoning. In Giuseppe De Giacomo, Alejandro Catalé, Bistra Dilkina, Michela Milano, Senén
Barro, Alberto Bugarin, and Jéréome Lang, editors, ECAI 2020 - 2/th European Conference
on Artificial Intelligence, volume 325 of Frontiers in Artificial Intelligence and Applications,
pages 1395-1402. IOS Press, 2020. doi:10.3233/FAIA200244.

David W. Opitz and Richard Maclin. Popular ensemble methods: An empirical study. J. Artif.
Intell. Res., 11:169-198, 1999. doi:10.1613/jair.614.

Bartosz Piotrowski and Josef Urban. ATPboost: Learning premise selection in binary setting
with ATP feedback. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors,
Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Ozford, UK, July 14-17, 2018, Proceedings,
volume 10900 of Lecture Notes in Computer Science, pages 566-574. Springer, 2018. doi:
10.1007/978-3-319-94205-6_37.

Bartosz Piotrowski and Josef Urban. Stateful premise selection by recurrent neural networks.
In LPAR, volume 73 of EPiC Series in Computing, pages 409-422. EasyChair, 2020.
Bartosz Piotrowski, Josef Urban, Chad E. Brown, and Cezary Kaliszyk. Can neural networks
learn symbolic rewriting? CoRR, abs/1911.04873, 2019.

John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning (in
2 volumes). Elsevier and MIT Press, 2001. URL: https://www.sciencedirect.com/book/
9780444508133 /handbook-of-automated-reasoning.

Stephan Schulz. E — A Brainiac Theorem Prover. AI Commun., 15(2-3):111-126, 2002. URL:
http://iospress.metapress.com/content/n908n94nmvk59v3c/.

Stephan Schulz. Simple and efficient clause subsumption with feature vector indexing. In
Automated Reasoning and Mathematics, volume 7788 of Lecture Notes in Computer Science,
pages 45-67. Springer, 2013.

Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middeldorp,
and Andrei Voronkov, editors, LPAR, volume 8312 of LNCS, pages 735-743. Springer, 2013.
do0i:10.1007/978-3-642-45221-5_49.

Stephan Schulz. System Description: E 1.8. In Ken McMillan, Aart Middeldorp, and Andrei
Voronkov, editors, Proc. of the 19th LPAR, Stellenbosch, volume 8312 of LNCS, pages 735-743.
Springer, 2013.

Stephan Schulz, Simon Cruanes, and Petar Vukmirovié. Faster, higher, stronger: E 2.3. In
Pascal Fontaine, editor, Proc. of the 27th CADE, Natal, Brasil, number 11716 in LNAI, pages
495-507. Springer, 2019.

Stephan Schulz and Geoff Sutcliffe. Proof generation for saturating first-order theorem provers.
In David Delahaye and Bruno Woltzenlogel Paleo, editors, All about Proofs, Proofs for All,
volume 55 of Mathematical Logic and Foundations, pages 45—61. College Publications, London,
UK, January 2015.

Martin Suda. Improving ENIGMA-style clause selection while learning from history. In André
Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28 - 28th International
Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings, volume
12699 of Lecture Notes in Computer Science, pages 543-561. Springer, 2021. doi:10.1007/
978-3-030-79876-5_31.

Martin Suda. Vampire with a brain is a good ITP hammer. In Boris Konev and Giles
Reger, editors, Frontiers of Combining Systems - 13th International Symposium, FroCoS
2021, Birmingham, UK, September 8-10, 2021, Proceedings, volume 12941 of Lecture Notes in
Computer Science, pages 192-209. Springer, 2021. doi:10.1007/978-3-030-86205-3_11.
Tanel Tammet. Towards efficient subsumption. In CADFE, volume 1421 of Lecture Notes in
Computer Science, pages 427-441. Springer, 1998.

19:21

ITP 2023

https://openreview.net/forum?id=S1eZYeHFDS
https://doi.org/10.3233/FAIA200244
https://doi.org/10.1613/jair.614
https://doi.org/10.1007/978-3-319-94205-6_37
https://doi.org/10.1007/978-3-319-94205-6_37
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
http://iospress.metapress.com/content/n908n94nmvk59v3c/
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-030-79876-5_31
https://doi.org/10.1007/978-3-030-79876-5_31
https://doi.org/10.1007/978-3-030-86205-3_11

19:22

MizAR 60 for Mizar 50

54

55

56

57

58

59

60

61

J. Urban. Translating Mizar for First Order Theorem Provers. In A. Asperti, B. Buchberger,
and J.H. Davenport, editors, Proceedings of the 2nd International Conference on Mathematical
Knowledge Management, number 2594 in LNCS, pages 203-215. Springer, 2003.

Josef Urban. MPTP — Motivation, Implementation, First Experiments. J. Autom. Reasoning,
33(3-4):319-339, 2004. doi:10.1007/s10817-004-6245-1.

Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning,
37(1-2):21-43, 2006. doi:10.1007/s10817-006-9032-3.

Josef Urban. BliStr: The Blind Strategymaker. In Georg Gottlob, Geoff Sutcliffe, and
Andrei Voronkov, editors, Global Conference on Artificial Intelligence, GCAI 2015, Tbilisi,
Georgia, October 16-19, 2015, volume 36 of EPiC Series in Computing, pages 312-319. Easy-
Chair, 2015. URL: http://www.easychair.org/publications/paper/BliStr_The_Blind_
Strategymaker, doi:10.29007/8n7m.

Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments. In
Christoph Benzmiiller and Bruce R. Miller, editors, Intelligent Computer Mathematics -
13th International Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings,
volume 12236 of Lecture Notes in Computer Science, pages 315-323. Springer, 2020. doi:
10.1007/978-3-030-53518-6_24.

Josef Urban, Geoff Sutcliffe, Petr Pudlak, and Jifi Vyskocil. MalLARea SG1 — Machine
Learner for Automated Reasoning with Semantic Guidance. In IJCAR, pages 441-456, 2008.
doi:10.1007/978-3-540-71070-7_37.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
arXiv:1706.03762.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural trans-
lation of informal to formal mathematics. In Florian Rabe, William M. Farmer, Grant O.
Passmore, and Abdou Youssef, editors, 11th International Conference on Intelligent Com-
puter Mathematics (CICM 2018), volume 11006 of LNCS, pages 255-270. Springer, 2018.
doi:10.1007/978-3-319-96812-4_22.

https://doi.org/10.1007/s10817-004-6245-1
https://doi.org/10.1007/s10817-006-9032-3
http://www.easychair.org/publications/paper/BliStr_The_Blind_Strategymaker
http://www.easychair.org/publications/paper/BliStr_The_Blind_Strategymaker
https://doi.org/10.29007/8n7m
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-540-71070-7_37
https://arxiv.org/abs/1706.03762
https://doi.org/10.1007/978-3-319-96812-4_22

	1 Introduction: Mizar, MML, Hammers and AITP
	1.1 Contributions
	1.2 Overview of the Methods and Experiments

	2 The Mizar Mathematical Library and the Mizar40 Corpus
	3 ENIGMA: ATP Guidance and Related Technologies
	3.1 Saturation Theorem Proving Meets Machine Learning
	3.2 Gradient Boosted Decision Tree Classifiers and Features
	3.3 Graph Neural Network (GNN) Classifiers
	3.4 Additional Related Techniques

	4 Learning Premise Selection From the MML
	4.1 Multilabel Premise Selection (K, N, R)
	4.2 Premise Selection as Binary Classification (L, G)
	4.3 Ensemble Methods for Premise Selection (E)
	4.4 Subproblem Based Premise Minimization (M)

	5 Strategies and Portfolios
	6 Experiments and Results
	6.1 Bushy Experiments and Timeline
	6.2 Training Data for Premise Selection
	6.3 Training the Premise Selectors
	6.4 ENIGMA Experiments on the Premise Selection Data
	6.5 Final Hammer Portfolio
	6.6 Transfer to MML 1382

	7 Proofs
	8 Conclusion: AI/TP Bet Completed

