4,589 research outputs found

    Solution of Massless Spin One Wave Equation in Robertson-Walker Space-time

    Full text link
    We generalize the quantum spinor wave equation for photon into the curved space-time and discuss the solutions of this equation in Robertson-Walker space-time and compare them with the solution of the Maxwell equations in the same space-time.Comment: 16 Pages, Latex, no figures, An expanded version of paper published in International Journal of Modern Physics A, 17 (2002) 113

    Processing count queries over event streams at multiple time granularities

    Get PDF
    Cataloged from PDF version of article.Management and analysis of streaming data has become crucial with its applications to web, sensor data, network traffic data, and stock market. Data streams consist of mostly numeric data but what is more interesting are the events derived from the numerical data that need to be monitored. The events obtained from streaming data form event streams. Event streams have similar properties to data streams, i.e., they are seen only once in a fixed order as a continuous stream. Events appearing in the event stream have time stamps associated with them at a certain time granularity, such as second, minute, or hour. One type of frequently asked queries over event streams are count queries, i.e., the frequency of an event occurrence over time. Count queries can be answered over event streams easily, however, users may ask queries over different time granularities as well. For example, a broker may ask how many times a stock increased in the same time frame, where the time frames specified could be an hour, day, or both. Such types of queries are challenging especially in the case of event streams where only a window of an event stream is available at a certain time instead of the whole stream. In this paper, we propose a technique for predicting the frequencies of event occurrences in event streams at multiple time granularities. The proposed approximation method efficiently estimates the count of events with a high accuracy in an event stream at any time granularity by examining the distance distributions of event occurrences. The proposed method has been implemented and tested on different real data sets including daily price changes in two different stock exchange markets. The obtained results show its effectiveness. (C) 2005 Elsevier Inc. All rights reserved

    Scribble-Supervised {LiDAR} Semantic Segmentation

    Get PDF

    First quantized electron and photon model of QED and radiative processes

    Full text link
    In this study we combine the classical models of the massive and massless spinning particles, derive the current-current interaction Lagrangian of the particles from the gauge transformations of the classical spinors, and discuss radiative processes in electrodynamics by using the solutions of the Dirac equation and the quantum wave equations of the photon. The longitudinal polarized photon states give a new idea about the vacuum concept in electrodynamics.Comment: LaTeX file, 20 pages, 7 figures. to appear in Canadian Journal of Physic

    QR-RLS algorithm for error diffusion of color images

    Get PDF
    Printing color images on color printers and displaying them on computer monitors requires a significant reduction of physically distinct colors, which causes degradation in image quality. An efficient method to improve the display quality of a quantized image is error diffusion, which works by distributing the previous quantization errors to neighboring pixels, exploiting the eye's averaging of colors in the neighborhood of the point of interest. This creates the illusion of more colors. A new error diffusion method is presented in which the adaptive recursive least-squares (RLS) algorithm is used. This algorithm provides local optimization of the error diffusion filter along with smoothing of the filter coefficients in a neighborhood. To improve the performance, a diagonal scan is used in processing the image, (C) 2000 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(00)00611-5]

    A Critical Review on Improving the Fatigue Life and Corrosion Properties of Magnesium Alloys via the Technique of Adding Different Elements

    Get PDF
    Magnesium is the eighth-most abundant element in the world and its alloys have a widespread application in various industries such as electronic and transport (i.e., air, land, and sea) engineering, due to their significant mechanical properties, excellent machinability, high strength to weight ratios, and low cost. Although monolithic Mg metal is known as the lightest industrial metal (magnesium density is 30% less than the density of the aluminum, and this unique property increases the attractiveness of its usage in the transportation industry), one of the significant limitations of magnesium, which affects on its applications in various industries, is very high reactivity of this metal (magnesium with an electronegativity of 31.1 can give electrons to almost all metals and corrodes quickly). To overcome this problem, scholars are trying to produce magnesium (Mg) alloys that are more resistant to a variety of loads and environmental conditions. In this regard, Mg alloys include well-known materials such as aluminum (Al), Zinc (Zn), Manganese (Mn), Silicon (Si), and Copper (Cu), etc., and their amount directly affects the properties of final products. In the present review paper, the authors attempted to present the latest achievements, methods, and influential factors (finish-rolling, pore defects, pH value, microstructure, and manufacturing processes, etc.) on the fatigue life and corrosion resistance of most significant Mg alloys, including AM50, AM60, AZ31, AZ61, AZ80, AZ91, ZK60, and WE43, under various conditions. The summarized results and practical hints presented in this paper can be very useful to enhance the reliability and quality of Mg-made structures

    Dual functionality of conjugated polymer nanoparticles as an anticancer drug carrier and a fluorescent probe for cell imaging

    Get PDF
    Cataloged from PDF version of article.Multifunctional nanoparticles based on a green emitting, hydrophobic conjugated polymer, poly[(9,9-bis{propeny}fluorenyl-2,7-diyl)-co-(1,4- benzo-{2,1,3}-thiodiazole)] (PPFBT), that acts both as a fluorescent reporter and a matrix to accommodate an anti-cancer compound, camptothecin (CPT), were prepared, characterized and their potential as a fluorescent probe for cell imaging and as a drug delivery vehicle were evaluated via in vitro cell assays. The cell viability of human hepatocellular carcinoma cell line (Huh7) was investigated in the absence and presence of CPT with sulforhodamine B (SRB) and real-time cell electronic sensing (RT-CES) cytotoxicity assays

    A Novel Approach for Analyzing the Effects of Almen Intensity on the Residual Stress and Hardness of Shot-Peened (TiB + TiC)/Ti–6Al–4V Composite: Deep Learning

    Get PDF
    In the present study, the experimental data of a shot-peened (TiB + TiC)/Ti–6Al–4V composite with two volume fractions of 5 and 8% for TiB + TiC reinforcements were used to develop a neural network based on the deep learning technique. In this regard, the distributions of hardness and residual stresses through the depth of the materials as the properties affected by shot peening (SP) treatment were modeled via the deep neural network. The values of the TiB + TiC content, Almen intensity, and depth from the surface were considered as the inputs, and the corresponding measured values of the residual stresses and hardness were regarded as the outputs. In addition, the surface coverage parameter was assumed to be constant in all samples, and only changes in the Almen intensity were considered as the SP process parameter. Using the presented deep neural network (DNN) model, the distributions of hardness and residual stress from the top surface to the core material were continuously evaluated for different combinations of input parameters, including the Almen intensity of the SP process and the volume fractions of the composite reinforcements

    Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    Get PDF
    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential
    • …
    corecore