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Abstract: In the present study, the experimental data of a shot-peened (TiB + TiC)/Ti–6Al–4V
composite with two volume fractions of 5 and 8% for TiB + TiC reinforcements were used to develop
a neural network based on the deep learning technique. In this regard, the distributions of hardness
and residual stresses through the depth of the materials as the properties affected by shot peening
(SP) treatment were modeled via the deep neural network. The values of the TiB + TiC content,
Almen intensity, and depth from the surface were considered as the inputs, and the corresponding
measured values of the residual stresses and hardness were regarded as the outputs. In addition,
the surface coverage parameter was assumed to be constant in all samples, and only changes in
the Almen intensity were considered as the SP process parameter. Using the presented deep neural
network (DNN) model, the distributions of hardness and residual stress from the top surface to the
core material were continuously evaluated for different combinations of input parameters, including
the Almen intensity of the SP process and the volume fractions of the composite reinforcements.

Keywords: titanium matrix composites; shot peening; deep neural network; modeling

1. Introduction

Metal matrix composites (MMCs), as one of the suitable alternatives for steels, due to
their good mechanical properties and light weight, have received special attention in vari-
ous industries, including the automotive industry [1–4]. In the meantime, one of the most
widely used MMCs in automobiles is Aluminum Matrix Composites (AMCs) [5–7]. For
example, many scholars have studied this material for use in the manufacture of automotive
steering knuckles and investigated its behavior under different working conditions [8,9].
It seems that the main reason for choosing this part is its super-critical condition in terms
of failure and connection to other important parts of suspension and steering systems,
which, in the case of failure, can cause serious damage to the car and its passengers [10,11].
In addition, it has been stated in some publications that this component does not have a
specific shape or geometry, so it is designed based on the location of other parts of the
suspension system and according to the classification of the car and its use [12]. Despite all
the efforts made by researchers, Reza Kashyzadeh showed in 2023 that the use of AMCs
with different percentages of titanium carbide as the reinforcement in the construction of
this super-critical part is not suitable from the viewpoint of the fatigue phenomenon [13].
Moreover, he claimed that a knuckle made of this type of composite (i.e., AMC + 10, 12,
and 15% TiC) works well against cyclic normal loads but, unfortunately, is not suitable
against cyclic shear loads, and he finally concluded that, due to the working conditions
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of this component, which is subjected to non-proportional multiaxial loading due to road
roughness and various maneuvers, it is better to use other MMCs. Hence, one of the
suggestions is to employ Titanium Matrix Composites (TMCs). In fact, TMCs are one of the
well-known metal composites and, due to their superior mechanical properties, are widely
employed and considered in a variety of industries [14,15]. The mechanical properties of
composites are dependent on the properties and quality of the matrix, reinforcement, and
matrix–reinforcement interface that bond the formers [16–18]. Moreover, composites are
reinforced with different types of reinforcements, such as continuous, long, and short fibers
and particles [19–22]. In this regard, research achievements show that reinforced TMCs
with whiskers or particles have more isotropic behaviors than reinforced ones with continu-
ous fibers [23–27]. However, the whiskers of titanium monobromide (TiB) and the particles
of titanium carbide (TiC) that can be obtained via high-temperature reactions [28] exhibit a
high modulus, a relative chemical stability, a high thermal stability, and clean interfaces
while retaining the same density and thermal expansion coefficient as TMCs [29–31]. In
addition, TMCs that are co-reinforced by both TiB and TiC, due to their favorable properties
and applications, have been investigated in many studies [32,33], and it has been proven
that using these two reinforcements simultaneously has more beneficial effects than the use
of either alone [34,35].

It is well known that, in metallic materials, most of the failures initiate from the surface
layer [36]. Moreover, this issue is also evident in industrial parts, and the corresponding
author has observed this in his previous research in the field of failure of this super-critical
part, i.e., the automotive steering knuckle. Therefore, surface treatments such as SP can
play a critical role in improving the mechanical properties of the surface, including the
surface hardness and Compressive Residual Stress (CRS) [37,38]. It has been found by many
studies that, by applying SP, the fatigue strength, corrosion, and wear resistance, as well
as mechanical properties, can be improved remarkably [39–41]. It is clear that conducting
various tests in this field is very time-consuming and expensive. However, the simulation
software available on the market and the modeling algorithms provided by researchers
have many errors compared to real data, which sometimes leads to catastrophic damages.

However, in recent decades, scholars have used artificial intelligence (AI) methods,
such as neural networks (NNs), as a mathematical approximation solution for the prediction
and analysis of complex phenomena and problems in different aspects of science and
engineering [42,43]. Generally, a neural network has three main layers: input layer, hidden
layer, and output layer [44,45]. As one of the first generations of neural networks, the
Shallow Neural Network (SNN), which usually has one hidden layer (or a maximum
of two hidden layers in some cases) that is mostly developed via the back-propagation
algorithm, was used for many years, especially in the field of materials science [46,47]. For
the first time in the year 2006, the presentation of the Deep Belief Network (DBN) approach
by Hinton et al. [48,49] made it feasible to develop Deep Neural Networks (DNNs) based
on the process of deep learning with a higher efficiency than common SNNs in prediction
and analysis. Afterward, by applying major improvements in the training process of
DNNs, they were used in the area of materials science [50]. Recently, in 2018 with only
two papers [51,52] and in 2019 with three works [53–55], DNNs were employed in the
area of composite materials for modeling. In the current study, a DNN model for the
prediction, analysis, and optimization of a shot-peened (TiB + TiC)/Ti–6Al–4V composite
was presented. In order to assess the capability of the presented DNN, the profile of the
hardness and distribution of CRS on the surface and in the depth of the material, which are
affected by SP, were analyzed with experimental data.

2. Experimental Data

All of the experimental data used in this study were obtained from Xie et al. [56].
Using in situ technology, composite materials of (TiB + TiC)/Ti–6Al–4V were fabricated,
and two types of reinforcements (TiB + TiC) with 5 and 8% volume fractions were used. In
their applied SP treatments, cast steel shots with a diameter of 0.6 mm and a hardness of



Materials 2023, 16, 4693 3 of 11

610 Hv were used, and projection pressures of 0.2 and 0.3 MPa were employed to obtain the
Almen intensities of 0.15 and 0.30 mm A, respectively. In both SP treatments, 100% surface
coverages were reported. In other words, only Conventional Shot Peening (CSP) treatment
was carried out. Figure 1 displays scanning electron microscope (SEM) images of the
prepared samples before and after applying the SP treatments. The relevant experimental
results are shown in Appendix A. The results reveal that both the CRS and hardness
enhance with an increase in the SP intensity, which deforms the surface layer and increases
the dislocation densities. In addition, the reinforcement particles act as block sources, while
the dislocation movements caused by SP have more favorable influences (see [56] for more
details). An X-Ray Stress Analyzer was used to examine the residual stresses in the surface
layer. The analysis was conducted using Cu-Kα radiation, with a voltage of 30 kV, a current
of 25 mA, and a Ni filter. The hardness was measured using a Digital Microhardness Tester
with an applied force of 2.94 N. To obtain the depth distribution of the residual stress and
hardness, the thin top surface layers were sequentially removed using a chemical etching
method involving a solution of water, nitric acid, and hydrofluoric acid.
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Figure 1. SEM images of the Ti–6Al–4V, 5% (TiB + TiC)/Ti–6Al–4V, and 8% (TiB + TiC)/Ti–6Al–4V
samples (a–c) before SP, (d–f) after SP with 0.15 mm A intensity, and (g–i) after SP with 0.3 mm A
intensity; adopted from [56] with permission from Elsevier.

3. Modeling and Analysis

NNs draw inspiration from the impressive performance and abilities of the human
brain in comprehending problems and providing logical solutions through functional
relationships. These networks find application in the modeling and analysis of intricate
and non-linear processes involving multiple variables. NNs can be utilized to model
and analyze non-linear processes that involve various influential factors [57]. In order to
obtain the distributions of the CRS and hardness from the top treated surface to the core
material, intervals of the parameters (CRS and hardness) measured in the depth and the
corresponding value of intensity were considered as the inputs, and the measured values
of the CRS and hardness were specified as the outputs. The workflow and a schematic
illustration of the DNN used in this study are shown in Figure 2a. Moreover, Figure 2b
provides a schematic representation of the architecture of a DNN, which is essentially
a modified version of an SNN with additional hidden layers. Structurally, they share
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many similarities. Developing a DNN may or may not involve a pre-training process.
In this study, the pre-training method was not considered. In this regard, from a total
of 30 samples, 24 samples were considered for the training process, and the remaining
6 samples were used for the testing step. Moreover, as a pre-process, all of the data were
normalized before feeding to the network. In all of the implemented SNNs and DNNs,
the value of the correlation coefficient (R2) was determined and considered as an accuracy
factor of the NNs’ performance. The correlation coefficient calculation is presented in
Appendix B.
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Figure 2. (a) Methodology applied in this study and (b) schematic illustration of DNN structure with
6 layers, including 4 hidden layers.

It is well known that, in the training step of the NNs for both SNNs and DNNs,
besides the hidden layer number, the number of neurons as the computational nodes has
a considerable role [45,46]. The impact of the number of neurons and layers in a neural
network on its modeling performance is widely recognized. The quantity of neurons serves
as a significant variable parameter in the network’s structure. Increasing the number of
neurons often leads to improved performance of the neural network, although it may also
result in a longer computational time. In such conditions, the network development can be
tuned by using a higher learning rate.

4. Results and Discussion

Figure 3a presents the performance of the developed SNNs with respect to the number
of neurons used in each layer, and it shows that the results of the SSNs with a higher
number of nodes are more accurate than the results of the others. The accuracy factor for
the implemented SNN with 2 hidden layers and 50 neurons in each layer (the SNN with
the highest efficiency) was determined to be 0.86, which was not favorable for further NN
analysis. The role of the number of hidden layers, in both the considered SNNs and DNNs,
is depicted in Figure 3b. It can be observed that, for the same data set, by enhancing the
depth of the network, more accuracy can be achieved. In addition, with an equal learning
rate of 0.195, to obtain an accuracy of about 0.99, the number of nodes can be decreased. All
of the presented NNs were obtained via a trial-and-error approach, and among them, the
DNN with an architecture of 2-36-36-36-36-2 with a tangential sigmoid activation function
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in the first layer and a logarithmic sigmoid transfer function in the hidden layers was
chosen and employed for further analysis. In this regard, the calculation method for the
corresponding model function based on the used network is presented in Appendix C.
Based on the predicted results of the used network, the values of R2 for the training and
testing processes were calculated and are presented in Table 1; the obtained accuracy values
are quite acceptable, and it could be concluded that the networks were developed well.
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Table 1. Accuracy of trained and tested DNN for each output parameter.

Output Parameter Training Accuracy Testing Accuracy

Residual stress 0.994 ± 0.002 0.988 ± 0.001
Hardness 0.997 ± 0.002 0.994 ± 0.004

The obtained model function of the DNN was employed to apply parametric analyses.
In Figure 4, the 2D contours of the residual stress, i.e., in Figure 4a–c, and hardness, i.e., in
Figure 4d–f, distributions from the top surface (depth of zero) up to a depth of 300 µm are
shown. According to the used experimental data, only three values of the Almen intensity,
namely, 0 (for the as-received specimens), 0.15, and 0.30 mm A, and nine depth range
values were used in the network implementation; however, the DNN, as a powerful tool,
continuously predicted the values of CRS and hardness for all the values of the Almen
intensity in the interval of 0 to 0.30 mm A and for all the values of depth from 0 to 300 µm.
Based on the predicted values, it can be observed that, by increasing the volume fraction of
TiB + TiC and the SP intensity, the hardness and CRS on the surface increase. Moreover, by
increasing the reinforcements, the depth of the hardness profile increases. Overall, these
2D contours can be used for an analysis of the behavior of the (TiB + TiC)/Ti–6Al–4V
composite after shot peening with different intensities and a coverage of 100% and different
reinforcement volume fractions.

Considering the efficiency of the DNN for successful parametric analyses of the shot
peening effective parameter of the Almen intensity on the residual stress and hardness of
the treated Ti–6Al–4V and (TiB + TiC)/Ti–6Al–4V with the considered content of 0, 5, and
8% TiB + TiC (as shown in Figure 4), general cases for the in-depth distribution of residual
stress and hardness were obtained for the condition of 0–8% TiB + TiC in the Ti–6Al–4V
matrix, as illustrated in Figure 5, following the approach presented by Maleki et al. [58].
The results revealed that the higher the Almen intensity, the higher the in-depth inducing
of CRS and hardening. Based on the predicted results, it can be seen that the highest ranges
of CRS were induced by applying SP with an Almen intensity of about 0.25–0.30 mm A
through a depth of about 10–55 µm below the surface. In addition, the highest values of
hardness were also obtained in the same range of intensity, as well as a very thin layer of



Materials 2023, 16, 4693 6 of 11

about 0–15 µm beneath the shot-peened surface. Hardening could be performed up to a
depth of about 250 µm but with a lower impact.
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5. Conclusions

In this study, the effects of variations in the Almen intensity, as one of the major
process parameters of SP, on the residual stress and hardness of (TiB + TiC)/Ti–6Al–4V
composites with different reinforcements volume fractions of 5 and 8% were modeled and
analyzed via a DNN as a novel approach of modeling in the field of mechanical surface
treatments in composite materials. According to the results, the predicted values of the
DNN have an accuracy of more than 0.98% higher than the common SNNs. This study’s
results can introduce the DNN as a powerful tool to analyze the variations in hardness and
CRS as outputs in shot-peened TMCs by variations in the Almen intensity. The findings
demonstrated a positive correlation between the Almen intensity and the depth of the
induced CRS and hardening. According to the results predicted by the DNN, the most
significant ranges of CRS were achieved when applying shot peening (SP) with an Almen
intensity of approximately 0.25–0.30 mm A, reaching depths of around 10–55 µm below
the surface. Similarly, the highest values of hardness were obtained within this intensity
range, specifically within a very thin layer of approximately 0–15 µm beneath the surface
that underwent shot peening. Moreover, hardening could be achieved up to a depth of
approximately 250 µm, with the impact being comparatively lower in that range.
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Appendix A

Table A1. Relevant experimental results of the shot-peened (TiB + TiC)/Ti–6Al–4V [56].

Sample No. Depth SP Intensity (mm A)
Residual Stress (MPa) Hardness (Hv) Sample Type

Matrix 5%
(TIB + TIC)

8%
(TIB + TIC) Matrix 5%

(TIB + TIC)
8%

(TIB + TIC)

1 0 0.00 10.42 18.04 17.93 334.72 380.37 417.57 Train
2 0 0.30 −522.83 −524.25 −575.51 524.87 560.38 637.31 Train
3 0 0.15 −375.97 −434.55 −481.94 484.31 512.07 584.43 Train
4 15 0.00 25.11 5.022 6.84 328.67 393.61 436.62 Train
5 15 0.30 −613.76 −648.62 −657.79 436.11 512.19 628.86 Train
6 15 0.15 −417.53 −499.54 −539.63 418.45 492.85 523.28 Train
7 25 0.00 −9.57 −20.26 −12.97 325.48 381.28 420.16 Test
8 25 0.30 −608.67 −650.57 −672.54 414.97 468.23 557.85 Train
9 25 0.15 −408.92 −465.67 −574.80 387.62 451.56 507.09 Train

10 50 0.00 14.35 −29.48 −9.19 315.39 403.32 411.77 Train
11 50 0.30 −581.27 −608.46 −626.77 378.62 455.55 530.79 Train
12 50 0.15 −397.63 −419.90 −545.84 372.53 431.43 475.18 Train
13 75 0.00 14.48 14.02 −12.72 338.28 381.40 423.67 Train
14 75 0.30 −564.84 −570.02 −586.49 385.38 438.64 538.40 Train
15 75 0.15 −354.00 −386.95 −516.88 358.29 420.55 446.63 Test
16 100 0.00 −12.84 −17.01 −14.41 340.03 396.67 414.43 Train
17 100 0.30 −557.53 −524.25 −515.10 368.47 433.57 509.66 Train
18 100 0.15 −324.71 −337.52 −264.28 349.94 411.35 459.31 Train
19 150 0.00 −5.26 −11.81 −8.67 330.01 375.66 409.48 Train
20 150 0.30 −422.37 −335.69 −299.08 350.72 388.76 438.64 Test
21 150 0.15 −302.74 −249.65 −120.90 340.80 386.23 435.87 Train
22 200 0.00 16.96 −13.89 −4.75 319.14 386.77 429.04 Train
23 200 0.30 −323.74 −220.36 −101.37 354.10 402.29 434.42 Test
24 200 0.15 −236.84 −194.73 −61.16 344.29 382.99 424.21 Train
25 250 0.00 28.21 14.93 17.41 337.86 375.06 424.09 Train
26 250 0.30 −46.11 −20.82 −28.14 343.11 380.31 428.50 Train
27 250 0.15 −31.80 −18.99 −15.97 336.83 378.90 410.87 Test
28 300 0.00 −13.62 −23.50 21.33 344.74 369.26 414.91 Train
29 300 0.30 −35.15 −18.99 −33.63 324.51 381.15 430.88 Train
30 300 0.15 −18.99 −11.67 −16.23 326.86 376.50 419.41 Test

Appendix B

Coefficient of correlation (R2) can be determined using the following equation [36]:

R2 =

n
∑

i=1
( fEXP,i − FEXP)( fANN,i − FANN)√

n
∑

i=1

(
( fEXP,i − FEXP)

2( fANN,i − FANN)
2
) (A1)

where n is the number of samples used for modeling, fEXP represents the experimental
value, and fANN denotes the networks’ predicted value. The values of FEXP and FANN are
calculated as follows:

FEXP =
1
n

n

∑
i=1

fEXP,i (A2a)

FANN =
1
n

n

∑
i=1

fANN,i (A2b)

Appendix C

Considering the optimal network, the DNN with six layers (including all of the input, hidden,
and output layers), the intended model function can be determined as the following equation:

S (s(1), s(2)) = a6 = f 6(w6f 5(w5 f 4(w4f 3 (w3f 2(w2f 1(w1p + b1)+ b2) + b3)+ b4) (A3)

in which a1 to a5 are the outputs of the first to fifth layer, respectively; a6 is the sixth layer
output, which is equal to the function S (s(1), s(2)). The functions of s(1) and s(2) illustrate
CRS and hardness. Moreover, p, w, b, and f represent the inputs, weight matrixes, bias
vectors, and transfer function in the layers, respectively.
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