144 research outputs found
<記録II>ハミル館一〇〇年の歩み : 1918~2018
Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among the renewable energy systems, a great deal of research has been conducted especially on photovoltaic, wind energy and fuel cell in the recent years. One of the hybrid renewable energy systems consisting of 5 kWp photovoltaic panels, 800 Wp wind turbines and 2.4 kWp fuel cell modules was installed at Clean Energy House (CEH), Pamukkale University in Denizli, Turkey. To protect this laboratory, a "Lightning Protection System" was installed at the CEH. In this study, design and installation processes of a lightning protection system for the hybrid renewable energy system at the CEH are considered. III. 7, bibl. 15 (in English; abstracts in English and Lithuanian)
Recommended from our members
Compact DT fusion spherical tori at modest field
This paper is a compilation of viewgraphs on the Ignition Spherical Torus (IST). Topics addressed in the report are plasma and engineering aspects, toroidal field coil technology, attractive features of the compact torus, and the need for an additional physics data base. (WRF
Kinetic simulations of X-B and O-X-B mode conversion and its deterioration at high input power
Spherical tokamak plasmas are typically overdense and thus inaccessible to externally-injected microwaves in the electron cyclotron range. The electrostatic electron Bernstein wave (EBW), however, provides a method to access the plasma core for heating and diagnostic purposes. Understanding the details of the coupling process to electromagnetic waves is thus important both for the interpretation of microwave diagnostic data and for assessing the feasibility of EBW heating and current drive. While the coupling is reasonably well-understood in the linear regime, nonlinear physics arising from high input power has not been previously quantified. To tackle this problem, we have performed one- and two-dimensional fully kinetic particle-in-cell simulations of the two possible coupling mechanisms, namely X-B and O-X-B mode conversion. We find that the ion dynamics has a profound effect on the field structure in the nonlinear regime, as high amplitude short-scale oscillations of the longitudinal electric field are excited in the region below the high-density cut-off prior to the arrival of the EBW. We identify this effect as the instability of the X wave with respect to resonant scattering into an EBW and a lower-hybrid wave. We calculate the instability rate analytically and find this basic theory to be in reasonable agreement with our simulation results
Recommended from our members
Edge turbulence and transport: Text and ATF modeling
We present experimental results on edge turbulence and transport from the tokamak TEXT and the torsatron ATF. The measured electrostatic fluctuations can explain the edge transport of particles and energy. Certain drive (radiation) and stabilizing (velocity shear) terms are suggested by the results. The experimental fluctuation levels and spectral widths can be reproduced by considering the nonlinear evolution of the reduced MHD equations, incorporating a thermal drive from line radiation. In the tokamak limit (with toroidal electric field) the model corresponds to the resistivity gradient mode, while in the currentless torsatron or stellarator limit it corresponds to a thermally driven drift wave
Recommended from our members
Configuration control, fluctuations, and transport in low-collisionality plasmas in the ATF Torsatron
In low-collisionality plasmas confined in tokamaks and stellarators, instabilities driven by particles trapped in inhomogeneities of the magnetic fields could be important in increasing plasma transport coefficients. In the Advanced Toroidal Facility (ATF), an {ell} = 2, M = 12 field-period stellarator device with major radius R = 2.1 m, average plasma minor radius a = 0.27 m, central and edge rotational transforms {chi}{sub 0} {approx} 0.3, {chi}{sub a} {approx} 1, the effects of electron trapping in the helical stellarator field are expected to be important in plasmas with {bar n}{sub e} {approx} 5 {times} 10{sup 12} cm{sup {minus}3}, T{sub e0} {approx} 1 keV. Such plasmas have already been sustained for long-pulses (20 s) using 150--400 kW of 53.2-GHz ECH power at B = 0.95 T. Transport analysis shows that for {rho} = r/a {le} 1/3, the electron anomalous transport is {le}10 times the neoclassical value, while at {rho} = 2/3 it is 10--100 times neoclassical; this is compatible with expectations for transport enhancement due to dissipative trapped-electron modes. 4 refs., 3 figs
TMJ response to mandibular advancement surgery: an overview of risk factors
Objective: In order to understand the conflicting information on temporomandibular joint (TMJ) pathophysiologic responses after mandibular advancement surgery, an overview of the literature was proposed with a focus on certain risk factors. Methods: A literature search was carried out in the Cochrane, PubMed, Scopus and Web of Science databases in the period from January 1980 through March 2013. Various combinations of keywords related to TMJ changes [disc displacement, arthralgia, condylar resorption (CR)] and aspects of surgical intervention (fixation technique, amount of advancement) were used. A hand search of these papers was also carried out to identify additional articles. Results: A total of 148 articles were considered for this overview and, although methodological troubles were common, this review identified relevant findings which the practitioner can take into consideration during treatment planning: 1- Surgery was unable to influence TMJ with preexisting displaced disc and crepitus; 2- Clicking and arthralgia were not predictable after surgery, although there was greater likelihood of improvement rather than deterioration; 3- The amount of mandibular advancement and counterclockwise rotation, and the rigidity of the fixation technique seemed to influence TMJ position and health; 4- The risk of CR increased, especially in identified high-risk cases. Conclusions: Young adult females with mandibular retrognathism and increased mandibular plane angle are susceptible to painful TMJ, and are subject to less improvement after surgery and prone to CR. Furthermore, thorough evidenced-based studies are required to understand the response of the TMJ after mandibular advancement surgery
- …