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In low-collisionality plasmas confined in tokamaks and stellarators, instabilities driven by
particles trapped in inhomogeneities of the magnetic field could be important in increasing
plasma transport coefficients. In the Advanced Toroidal Facility (ATF), an £ = 2, M =12 field-
period stellarator device with major radius R = 2.1 m, average plasma minor radius a = 0.27 m,
central and edge rotational transforms t0 ~ 0.3, t a = 1, the effects of electron trapping in the
helical stellarator field are expected to be important in plasmas with ne = 5 x 101 cm" , T ^ =
1 keV. Such plasmas have already been sustained for long-pulses (20 s) using 150-400 kWof
53.2-GHz ECU power at B = 0.95 T. Transport analysis shows that for p = r/a <V3, the elec-
tron anomalous transport is < 10 times the neoclassical value, while at p = 2/3 it is 10-100
times neoclassical; this is compatible with expectations for transport enhancement due to dissi-
pative trappsd-electron modes.

'Research sponsored by the Office of Fusion Energy, U. S. Department of Energy under contract DE-AC05-
84OR21400 with Martin Marietta Energy Systems, Inc.

^ensselaer Polytechnic Institute, Troy, New York
2Asociacion Euratom/CIEMAT, Madrid, Spain
3Engineering Division, Martin Marietta Energy Systems, Inc., Oak Ridge, Tennessee
^Computing and Telecommunications Division, Martin Marietta Energy Systems, Inc., Oak Ridge, Tennessee
^Georgia Institute of Technology, Atlanta, Georgia
6General Physics Institute, Moscow, USSR
7Fusion Research Center, University of Texas at Austin, Austin, Texas
8NationaI Institute for Fusion Science, Nagoya, Japan
'Princeton Plasma Physics Laboratory, Princeton, New Jersey



- 2 -

Configuration control
Trapped electron modes in stellarators are expected to be stabilized by shear [1] and by the

reduction of the confined trapped-particle population. In ATF, these physical quantities can be
varied by using external poloidal coils to change the axisymmetric dipole and quadrupole mag-
netic field components, which changes the magnetic flux surface shape, rotational transform
profile, and helical field ripple geometry. The magnetic configuration can be varied either from
shot to shot or dynamically during a single discharge. These techniques have already been ex-
ploited to check the neoclassical theory of the bootstrap current [2].

When the quadrupole field is used to vary the elongation of the flux surfaces in ATF so as
to increase the shear and change the confined fraction of helically trapped-particles from 90% to
10%, the experimental anomalous transport at p =2/3 decreases by a factor >10. This initial
result is at least compatible with the expectations for trapped-electron modes.

To separate the effects of shear and trapped-particle population experimentally, we are
beginning constant-paramerer configuration scans. Figure 1 shows a contour map of the con-
figuration space accessible in ATF. Over much of the range shown, the contours of constant
shear are nearly orthogonal to the contours of constant confined trapped-particle fraction. The
effect of flux-surface average curvature (magnetic well) can also be determined. Experiments
using both static and dynamic configuration scans are in progress.

Fluctuations
An array of diagnostics is being used to measure plasma turbulence throughout the plasma.

A heavy-ion beam probe, microwave reflectometer, and reciprocating Langmuir probe are
already operational, and a 2-mm microwave scattering system is in preparation. Initial measure-
ments (Fig. 2) show that n/n rises from < 1% at p = 0.3 to =10% at p = 1.

Studies of the edge turbulence [3] in the region p = 0.95-1.1 have shown that the fluctu-
ation-induced particle flux is comparable to that inferred from global measurements and that the
edge velocity shear layer plays an important role in edge phenomena. These and similar results
from tokamak experiments have motivated theoretical studies of drift-wave turbulence driven by
atomic processes as a candidate mechanism for the edge fluctuations.

In the gradient region (p = 0.8-0.95) interchange-type modes driven by the average unfa-
vorable curvature in the outer portion of the ATF magnetic configuration are expected to be
important. Figure 3 compares experimental measurements of fi/n in this region with calculations
for resistive-interchange turbulence [4]. The experimental points fall between theoretical values
calculated using the instability linear growth rate to determine a mixing length (lower curve) and
the results of non-linear calculations (upper curve).

Experimental studies correlating plasma turbulence in the plasma core with local transport
and trapped-particle populations are in progress.
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Fig. 1. Space of magnetic configurations accessible in ATF, show-
ing contours of constant shear (s), evaluated at p = 0.5, and con-
fined trapped particle fraction. There is a magnetic well (V" < 0)
for configurations above the V = 0 line. Configuration scans
above or below the line of zero mid-VF coil current may be car-
ried out in a single discharge. The nominal "standard" configura-
tion lies near the point of zero dipole and quadrupole moment.
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Fig. 2. Radial profile of density fluctuations as measured by a fast recip-
rocating Langmuir probe (FRLP), heavy-ion beam probe (HIBP)
and microwave reflectometer.
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Fig. 3. Comparison of n/n in gradient region with theoretical calcula-
tions for resistive interchange turbulence.
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