261 research outputs found

    Diversity and Salinity-Dependent Behaviour of Benthic Cyanobacterial Communities

    No full text

    Cyanobacterial diversity in extreme environments in Baja California, Mexico: a polyphasic study

    Get PDF
    Cyanobacterial diversity from two geographical areas of Baja California Sur, Mexico, were studied: Bahia Concepcion, and Ensenada de Aripez. The sites included hypersaline ecosystems, sea bottom, hydrothermal springs, and a shrimp farm. In this report we describe four new morphotypes, two are marine epilithic from Bahia Concepcion, Dermocarpa sp. and Hyella sp. The third, Geitlerinema sp., occurs in thermal springs and in shrimp ponds, and the fourth, Tychonema sp., is from a shrimp pond. The partial sequences of the 16S rRNA genes and the phylogenetic relationship of four cyanobacterial strains (Synechococcus cf. elongatus, Leptolyngbya cf. thermalis, Leptolyngbya sp., and Geitlerinema sp.) are alsopresented. Polyphasic studies that include the combination of light microscopy, cultures and the comparative analysis of 16S rRNA gene sequences provide the most powerful approach currently available to establish the diversity of these oxygenic photosynthetic microorganisms in culture and in nature

    Single-Nucleotide Polymorphism Genotyping Identifies a Locally Endemic Clone of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    We developed, tested, and applied a TaqMan real-time PCR assay for interrogation of three single-nucleotide polymorphisms that differentiate a clade (termed ‘t003-X’) within the radiation of methicillin-resistant Staphylococcus aureus (MRSA) ST225. The TaqMan assay achieved 98% typeability and results were fully concordant with DNA sequencing. By applying this assay to 305 ST225 isolates from an international collection, we demonstrate that clade t003-X is endemic in a single acute-care hospital in Germany at least since 2006, where it has caused a substantial proportion of infections. The strain was also detected in another hospital located 16 kilometers away. Strikingly, however, clade t003-X was not found in 62 other hospitals throughout Germany nor among isolates from other countries, and, hence, displayed a very restricted geographical distribution. Consequently, our results show that SNP-typing may be useful to identify and track MRSA clones that are specific to individual healthcare institutions. In contrast, the spatial dissemination pattern observed here had not been resolved by other typing procedures, including multilocus sequence typing (MLST), spa typing, DNA macrorestriction, and multilocus variable-number tandem repeat analysis (MLVA)

    Stable coexistence of equivalent nutrient competitors through niche differentiation in the light spectrum

    Get PDF
    Niche?based theories and the neutral theory of biodiversity differ in their predictions of how the species composition of natural communities will respond to changes in nutrient availability. This is an issue of major environmental relevance, as many ecosystems have experienced changes in nitrogen (N) and phosphorus (P) due to anthropogenic manipulation of nutrient loading. To understand how changes in N and P limitation may impact community structure, we conducted laboratory competition experiments using a multispecies phytoplankton community sampled from the North Sea. Results showed that picocyanobacteria (Cyanobium sp.) won the competition under N limitation, while picocyanobacteria and nonmotile nanophytoplankton (Nannochloropsis sp.) coexisted at equal abundances under P limitation. Additional experiments using isolated monocultures confirmed that Cyanobium sp. depleted N to lower levels than Nannochloropsis sp., but that both species had nearly identical P requirements, suggesting a potential for neutral coexistence under P?limited conditions. Pairwise competition experiments with the two isolates seemed to support the consistency of these results, but P limitation resulted in stable species coexistence irrespective of the initial conditions rather than the random drift of species abundances predicted by neutral theory. Comparison of the light absorption spectra indicates that coexistence of the two species was stabilized through differential use of the underwater light spectrum. Our results provide an interesting experimental example of modern coexistence theory, where species were equal competitors in one niche dimension but their competitive traits differed in other niche dimensions, thus enabling stable species coexistence on a single limiting nutrient through niche differentiation in the light spectrum

    The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    Get PDF
    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP

    Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families

    Get PDF
    Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4×10−6 (serial isolates) to 4.5×10−6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude

    Patient Referral Patterns and the Spread of Hospital-Acquired Infections through National Health Care Networks

    Get PDF
    Rates of hospital-acquired infections, such as methicillin-resistant Staphylococcus aureus (MRSA), are increasingly used as quality indicators for hospital hygiene. Alternatively, these rates may vary between hospitals, because hospitals differ in admission and referral of potentially colonized patients. We assessed if different referral patterns between hospitals in health care networks can influence rates of hospital-acquired infections like MRSA. We used the Dutch medical registration of 2004 to measure the connectedness between hospitals. This allowed us to reconstruct the network of hospitals in the Netherlands. We used mathematical models to assess the effect of different patient referral patterns on the potential spread of hospital-acquired infections between hospitals, and between categories of hospitals (University medical centers, top clinical hospitals and general hospitals). University hospitals have a higher number of shared patients than teaching or general hospitals, and are therefore more likely to be among the first to receive colonized patients. Moreover, as the network is directional towards university hospitals, they have a higher prevalence, even when infection control measures are equally effective in all hospitals. Patient referral patterns have a profound effect on the spread of health care-associated infections like hospital-acquired MRSA. The MRSA prevalence therefore differs between hospitals with the position of each hospital within the health care network. Any comparison of MRSA rates between hospitals, as a benchmark for hospital hygiene, should therefore take the position of a hospital within the network into account

    Two new rapid SNP-typing methods for classifying Mycobacterium tuberculosis complex into the main phylogenetic lineages

    Get PDF
    There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the 'Beijing' sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive

    Methicillin Resistance Transfer from Staphylocccus epidermidis to Methicillin-Susceptible Staphylococcus aureus in a Patient during Antibiotic Therapy

    Get PDF
    BACKGROUND: The mecA gene, encoding methicillin resistance in staphylococci, is located on a mobile genetic element called Staphylococcal Cassette Chromosome mec (SCCmec). Horizontal, interspecies transfer of this element could be an important factor in the dissemination of methicillin-resistant S. aureus (MRSA). Previously, we reported the isolation of a closely related methicillin-susceptible Staphylococcus aureus (MSSA), MRSA and potential SCCmec donor Staphylococcus epidermidis isolate from the same patient. Based on fingerprint techniques we hypothesized that the S. epidermidis had transferred SCCmec to the MSSA to become MRSA. The aim of this study was to show that these isolates form an isogenic pair and that interspecies horizontal SCCmec transfer occurred. METHODOLOGY/RESULTS: Whole genome sequencing of both isolates was performed and for the MSSA gaps were closed by conventional sequencing. The SCCmec of the S. epidermidis was also sequenced by conventional methods. The results show no difference in nucleotide sequence between the two isolates except for the presence of SCCmec in the MRSA. The SCCmec of the S. epidermidis and the MRSA are identical except for a single nucleotide in the ccrB gene, which results in a valine to alanine substitution. The main difference with the closely related EMRSA-16 is the presence of SaPI2 encoding toxic shock syndrome toxin and exfoliative toxin A in the MSSA-MRSA pair. No transfer of SCCmec from the S. epidermidis to the MSSA could be demonstrated in vitro. CONCLUSION: The MSSA and MRSA form an isogenic pair except for SCCmec. This strongly supports our hypothesis that the MRSA was derived from the MSSA by interspecies horizontal transfer of SCCmec from S. epidermidis O7.1

    Short Term Evolution of a Highly Transmissible Methicillin-Resistant Staphylococcus aureus Clone (ST228) in a Tertiary Care Hospital

    Get PDF
    Staphylococcus aureus is recognized as one of the major human pathogens and is by far one of the most common nosocomial organisms. The genetic basis for the emergence of highly epidemic strains remains mysterious. Studying the microevolution of the different clones of S. aureus is essential for identifying the forces driving pathogen emergence and spread. The aim of the present study was to determine the genetic changes characterizing a lineage belonging to the South German clone (ST228) that spread over ten years in a tertiary care hospital in Switzerland. For this reason, we compared the whole genome of eight isolates recovered between 2001 and 2008 at the Lausanne hospital. The genetic comparison of these isolates revealed that their genomes are extremely closely related. Yet, a few more important genetic changes, such as the replacement of a plasmid, the loss of large fragments of DNA, or the insertion of transposases, were observed. These transfers of mobile genetic elements shaped the evolution of the ST228 lineage that spread within the Lausanne hospital. Nevertheless, although the strains analyzed differed in their dynamics, we have not been able to link a particular genetic element with spreading success. Finally, the present study showed that new sequencing technologies improve considerably the quality and quantity of information obtained for a single strain; but this information is still difficult to interpret and important investments are required for the technology to become accessible for routine investigations
    corecore