35 research outputs found

    On the Sensitivity and Specificity of Postmortem Upper Respiratory Tract Testing for SARS-CoV-2

    Get PDF
    Background Postmortem testing can improve our understanding of the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) if sufficiently sensitive and specific. Methods We investigated the postmortem sensitivity and specificity of reverse transcriptase polymerase chain reaction (PCR) testing on upper respiratory swabs using a dataset of everyone tested for SARS-CoV-2 before and after death in England, 1 March to 29 October 2020. We analyzed sensitivity in those with a positive test before death by time to postmortem test. We developed a multivariate model and conducted time-to-negativity survival analysis. For specificity, we analyzed those with a negative test in the week before death. Results Postmortem testing within a week after death had a sensitivity of 96.8% if the person had tested positive within a week before death. There was no effect of age, sex, or specimen type on sensitivity, but individuals with coronavirus disease 2019 (COVID-19)–related codes on their death certificate were 5.65 times more likely to test positive after death (95% confidence interval, 2.31–13.9). Specificity was 94.2%, increasing to 97.5% in individuals without COVID-19 on the death certificate. Conclusion Postmortem testing has high sensitivity (96.8%) and specificity (94.2%) if performed within a week after death and could be a useful diagnostic tool

    malariaAtlas: an R interface to global malariometric data hosted by the Malaria Atlas Project

    Get PDF
    Background The Malaria Atlas Project (MAP) has worked to assemble and maintain a global open-access database of spatial malariometric data for over a decade. This data spans various formats and topics, including: geo-located surveys of malaria parasite rate; global administrative boundary shapefiles; and global and regional rasters representing the distribution of malaria and associated illnesses, blood disorders, and intervention coverage. MAP has recently released malariaAtlas, an R package providing a direct interface to MAP’s routinely-updated malariometric databases and research outputs. Methods and results The current paper reviews the functionality available in malariaAtlas and highlights its utility for spatial epidemiological analysis of malaria. malariaAtlas enables users to freely download, visualise and analyse global malariometric data within R. Currently available data types include: malaria parasite rate and vector occurrence point data; subnational administrative boundary shapefiles; and a large suite of rasters covering a diverse range of metrics related to malaria research. malariaAtlas is here used in two mock analyses to illustrate how this data may be incorporated into a standard R workflow for spatial analysis. Conclusions malariaAtlas is the first open-access R-interface to malariometric data, providing a new and reproducible means of accessing such data within a freely available and commonly used statistical software environment. In this way, the malariaAtlas package aims to contribute to the environment of data-sharing within the malaria research community

    Brief Engagement and Acceptance Coaching for Community and Hospice Settings (the BEACHeS Study): Protocol for the development and pilot testing of an evidence-based psychological intervention to enhance wellbeing and aid transition into palliative care

    Get PDF
    Background: Cancer affects millions of individuals globally, with a mortality rate of over eight million people annually. Although palliative care is often provided outside of specialist services, many people require, at some point in their illness journey, support from specialist palliative care services, for example, those provided in hospice settings. This transition can be a time of uncertainty and fear and there is a need for effective interventions to meet the psychological and supportive care needs of people with cancer that cannot be cured. While Acceptance and Commitment Therapy (ACT) has been shown to be effective across diverse health problems, robust evidence for its effectiveness in palliative cancer populations is not extensive. Method: This mixed-methods study uses a single-case experimental design with embedded qualitative interviews to pilot test a novel intervention for this patient group. Between 14 and 20 patients will be recruited from two hospices in England and Scotland. Participants will receive five face-to-face manualised sessions with a psychological therapist. Sessions are structured around teaching core ACT skills (Openness, Awareness and Engagement) as a way to deal effectively with challenges of transition into specialist palliative care services. Outcome measures include: cancer-specific quality of life (primary outcome) and distress (secondary outcome), which are assessed alongside measures of psychological flexibility. Daily diary outcome assessments will be taken for key measures, alongside more detailed weekly self-report, through baseline, intervention and one-month follow-up phases. After follow-up, participants will be invited to take part in a qualitative interview to understand their experience of taking part, and acceptability and perceived effectiveness of the intervention and its components. Discussion: This study is the first investigation of using ACT with terminally ill patients at the beginning of their transition into palliative treatment. Using in-depth single-case approaches, we will refine and manualise intervention content by the close of the study for use in follow-up research trials. Our long-term goal is then to test the intervention as delivered by non-psychologist specialist palliative care practitioners thus broadening the potential relevance of the approach

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021

    Get PDF
    This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020–December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Summary Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2

    Get PDF
    Background: Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. Methods: We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September–27 September 2021) and 15 (19 October–5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month. Results: We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI 8–23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. Conclusions: As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals. © 2022, The Author(s)

    Tracking SARS-CoV-2 mutations and variants through the COG-UK-Mutation Explorer

    Get PDF
    COG-UK Mutation Explorer (COG-UK-ME, https://sars2.cvr.gla.ac.uk/cog-uk/—last accessed date 16 March 2022) is a web resource that displays knowledge and analyses on SARS-CoV-2 virus genome mutations and variants circulating in the UK, with a focus on the observed amino acid replacements that have an antigenic role in the context of the human humoral and cellular immune response. This analysis is based on more than 2 million genome sequences (as of March 2022) for UK SARS-CoV-2 data held in the CLIMB-COVID centralised data environment. COG-UK-ME curates these data and displays analyses that are cross-referenced to experimental data collated from the primary literature. The aim is to track mutations of immunological importance that are accumulating in current variants of concern and variants of interest that could alter the neutralising activity of monoclonal antibodies (mAbs), convalescent sera, and vaccines. Changes in epitopes recognised by T cells, including those where reduced T cell binding has been demonstrated, are reported. Mutations that have been shown to confer SARS-CoV-2 resistance to antiviral drugs are also included. Using visualisation tools, COG-UK-ME also allows users to identify the emergence of variants carrying mutations that could decrease the neutralising activity of both mAbs present in therapeutic cocktails, e.g. Ronapreve. COG-UK-ME tracks changes in the frequency of combinations of mutations and brings together the curated literature on the impact of those mutations on various functional aspects of the virus and therapeutics. Given the unpredictable nature of SARS-CoV-2 as exemplified by yet another variant of concern, Omicron, continued surveillance of SARS-CoV-2 remains imperative to monitor virus evolution linked to the efficacy of therapeutics

    The SARS-CoV-2 Alpha variant was associated with increased clinical severity of COVID-19 in Scotland: A genomics-based retrospective cohort analysis

    Get PDF
    Objectives The SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. Methods In this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the Alpha variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. Results Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus pre-Alpha variants). Conclusions The Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages
    corecore