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Abstract 

Background:  The Malaria Atlas Project (MAP) has worked to assemble and maintain a global open-access database 
of spatial malariometric data for over a decade. This data spans various formats and topics, including: geo-located 
surveys of malaria parasite rate; global administrative boundary shapefiles; and global and regional rasters represent-
ing the distribution of malaria and associated illnesses, blood disorders, and intervention coverage. MAP has recently 
released malariaAtlas, an R package providing a direct interface to MAP’s routinely-updated malariometric databases 
and research outputs.

Methods and results:  The current paper reviews the functionality available in malariaAtlas and highlights its utility 
for spatial epidemiological analysis of malaria. malariaAtlas enables users to freely download, visualise and analyse 
global malariometric data within R. Currently available data types include: malaria parasite rate and vector occurrence 
point data; subnational administrative boundary shapefiles; and a large suite of rasters covering a diverse range of 
metrics related to malaria research. malariaAtlas is here used in two mock analyses to illustrate how this data may be 
incorporated into a standard R workflow for spatial analysis.

Conclusions:  malariaAtlas is the first open-access R-interface to malariometric data, providing a new and reproduc-
ible means of accessing such data within a freely available and commonly used statistical software environment. In 
this way, the malariaAtlas package aims to contribute to the environment of data-sharing within the malaria research 
community.
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Background
Since 2005, the Malaria Atlas Project (MAP) has worked 
to assemble and maintain a global open-access data-
base of spatially explicit malariometric data. This work 
has been motived by dual aims to both enhance open-
access malaria data availability and to provide operation-
ally relevant information for national and international 

policymakers [1–4]. The availability of this repository 
of global malariometric data has underpinned numer-
ous studies in the field [5–15]; and continues to support 
prominent international research such as the Global 
Burden of Disease study [16, 17] and the World Malaria 
Report [18–22]. The fundamental need for accurate local 
information on malaria burden is evident now more than 
ever, as more countries approach malaria elimination 
and the challenges of limited funding, insecticide resist-
ance and antimalarial resistance continue to grow [18]. 
To this end, MAP maintains a routinely updated assem-
bly of national and subnational malariometric data, while 
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developing tools to enable open access to this data for 
researchers and policymakers worldwide.

The data estate hosted at MAP is one of the largest 
open-access collections of global malariometric data, 
both in terms of number of records and geographic cov-
erage. This data spans various formats, topic areas and 
spatial resolutions, including survey data for precise 
point locations, administrative-unit level routine surveil-
lance data, and raster grids of spatially continuous mod-
elled predictions (see Table  1). The geo-located survey 
data specifically encompass: malaria parasite rate (cross-
sectional point prevalence), malaria-relevant blood dis-
order prevalence, intervention coverage, and Anopheles 
vector occurrence. The subnational routine surveillance 
data covers metrics such as API (annual parasite inci-
dence) and malaria mortality. Finally, the predicted global 
and regional rasters represent estimates of the distribu-
tion of malaria infection and associated disease (e.g. 
clinical incidence; malaria-attributable fever), malaria-
relevant blood disorders, vector occurrence and relative 
abundance, intervention coverage, and accessibility to 
cities. This database comprises published data from sci-
entific publications, national surveys (e.g. DHS and MIS 
[23, 24]), and grey literature produced by national minis-
tries of health and international organizations; as well as 
unpublished data from researchers and malaria control 
programmes worldwide. Altogether this represents dec-
ades of collaborative work and countless person-hours of 
on-the-ground data collection.

Along with a newly released suite of online tools that 
enable open-access availability to MAP’s databases and 
associated research outputs (available at http://www.

map.ox.ac.uk), MAP has recently released malariaAtlas, 
an R package providing a direct interface to MAP’s open-
access databases and research outputs [25–27]. This 
interface offers three main advantages to traditional data 
repositories, including: user-defined queries to enable 
efficient downloading of subsets of large datasets; auto-
matic access to the most up-to-date version of the data-
base including new data and/or database amendments; 
and transparent and reproducible data access in the form 
of a few lines of shareable R code. This paper introduces 
malariaAtlas, outlining the available data and functions 
in the package and illustrating its utility in two reproduc-
ible mock analyses.

Results and discussion
Data available through malariaAtlas
malariaAtlas currently enables users to download, vis-
ualize and manipulate three types of data: parasite rate 
(PR) survey data; administrative boundary shapefiles; 
and a large suite of rasters covering a range of mod-
elled outputs related to malaria research (see Table 1). 
Georeferenced PR survey data is a core component of 
MAP’s data estate and a common measure of malaria 
endemicity [1, 28]. The PR survey points entered into 
MAP’s database are screened for robust sampling 
methods and geographic specificity to ensure they pro-
vide representative parasite species-specific informa-
tion on the local prevalence of malaria infection. This 
database includes 73,326 survey points as of July 2018 
(64,685 Plasmodium falciparum; 14,412 Plasmodium 
vivax), covering the period 1975–2017. In addition to 
georeferenced data on malaria endemicity, up-to-date 

Table 1  Outline of the Malaria Atlas Project open-access data estate and current availability

a  Available at map.ox.ac.uk

Data type and format Open-access availability

malariaAtlas Web-toolsa

Geo-located point data

Malaria parasite rate (PR; for P. falciparum and P. vivax) Available now Available now

Dominant mosquito vectors Available now Available now

Malaria-relevant blood disorders Coming soon Available now

Administrative-unit (polygon) level data

Administrative boundary shapefiles Available now Not currently available

Annual Parasite Incidence (API; for P. falciparum and P. vivax) Coming soon Coming soon

Malaria reproductive number (P. falciparum) Coming soon Available now

Global/regional raster grids

Predicted malaria infection risk, prevalence, and associated illness Available now Available now

Predicted prevalence of malaria-relevant blood disorders Available now Available now

Predicted mosquito vector distribution and relative abundance Available now Available now

Intervention Coverage (ITNs; IRS; ACT) Available now Available now

Global travel time to cities Available now Available now

http://www.map.ox.ac.uk
http://www.map.ox.ac.uk
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and topologically correct shapefiles of a region’s admin-
istrative boundaries are fundamental to visualizing, 
interpreting and analysing spatial epidemiological data. 
As such, MAP maintains a collated set of subnational 
administrative boundary shapefiles assembled from 
various publicly available sources (see [29]). MAP also 
makes a large number of raster grids publicly avail-
able, representing the major outputs of MAP’s spati-
otemporal epidemiological research. At the time of 
writing, 86 raster surfaces were available to download 
using malariaAtlas. These cover a variety of relevant 
metrics, such as predicted malaria parasite prevalence, 
clinical incidence and malaria-attributable fever [8, 
30–32]; prevalence of malaria-related human blood dis-
orders [33–35]; predicted risk of zoonotic Plasmodium 
knowlesi infection [36]; predicted mosquito vector dis-
tribution and relative abundance [37–40]; coverage of 
insecticide-treated bed nets (ITNs), indoor residual 
spraying (IRS) and artemisinin-based combination 
therapy (ACT) [8]; and travel time to cities [41]. By 
providing an R-interface to MAP’s hosted survey data, 
shapefiles and rasters, malariaAtlas enhances direct 
and reproducible access to this data source.

Downloading and visualizing data with malariaAtlas
Using malariaAtlas to download and visualize data 
from MAP in R is achieved through four main classes 
of functions as outlined in Table  2. These include: ‘list’ 
functions that allow the user to see how much data is 
available for a given data type; ‘get’ functions for data 
downloads; ‘autoplot’ methods that enable quick visu-
alisation of downloaded data using functions from the 
ggplot2 package [42]; and a number of utility functions 
that enable common manipulations of downloaded data 
(see Table 2).

Within malariaAtlas, the functions listPoints, getPR 
and autoplot.pr.points provide a quick and simple way of 
downloading and visualising publicly available PR survey 
data hosted by MAP. listPoints returns a data.frame out-
lining the countries for which parasite rate survey data is 
available in MAPs database. getPR returns a data.frame 
of geo-located PR point data including: number of indi-
viduals examined; number of positive diagnoses by spe-
cies; age range of the sample population; sampling date 
and location information; diagnostic method(s) used; 
and source citation. Arguments are included to enable 
queries based on location (Continent; Country Name; 3 

Table 2  Outline of malariaAtlas functions

a   malariaAtlas specific object class defined for purposes of quick visualisation using autoplot (pr.points; mapShp; and mapRaster) or in-built optional conversion of 
Spatial* classes to data.frame formats (mapShp; mapRaster)
b   See the ageStand R package on GitHub [43] or malariaAtlas help files for additional information on convertPrevalence

Category Function name Purpose Data type R object class

‘List’ available data listData Wrapper for below functions, returning a data.frame outlining data 
availability

– data.frame

listPoints Return a data.frame listing countries with parasite rate survey points Point data data.frame

listShp Return a data.frame listing administrative units with shapefiles available 
to download

Shapefile data.frame

listRaster Return a data.frame listing rasters available to download Raster data.frame

‘Get’ available 
data

getPR Download parasite rate survey data for specified location(s) and species Point data data.frame; pr.pointsa

getShp Download shapefiles for specified location(s) and administrative level(s) Shapefile SpatialPolygon(s); data.
frame; mapShpa

getRaster Download specified rasters for specified location(s) and year(s) Raster RasterLayer; RasterBrick; 
RasterStack; data.
frame; mapRastera

‘Autoplot’ down-
loaded data

autoplot.pr.points Quickly visualise parasite rate survey locations and raw PR values for 
data downloaded using malariaAtlas

Point data gg

autoplot.mapShp Quickly visualise shapefiles downloaded using malariaAtlas Shapefile gg

autoplot.mapRaster Quickly visualise rasters downloaded using malariaAtlas Raster gg/list

Utility functions extractRaster Extract values from specified rasters at specified point locations (lat/long) Point data data.frame

convertPrevalenceb Convert parasite rate from a given age-range to another Prevalence numeric

as.mapShp Convert SpatialPolygon or SpatialPolygons objects to mapShpa objects Shapefile mapShpa; data.frame

as.mapRaster Convert objects of RasterLayer; RasterBrick; RasterStack classes or a list of 
RasterBrick/RasterStacks to mapRastera objects

Raster mapRastera; data.frame
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letter ISO code; or spatial extent) and species (either P. 
falciparum or P. vivax). The returned data has the addi-
tional class ‘pr.points’ which enables quick visualization 
of downloaded points using autoplot. A subset of the PR 
survey points in MAP’s database remain confidential, 
in accordance with the respective data-use agreements 
under which they have been shared. For these confiden-
tial data points, MAP has either limited or no permis-
sion to share measured PR values and/or geo-location 
data, however citations to the original data source are 
provided for all downloaded points. Accordingly, data-
sharing restrictions for any given point are provided in 
the ‘permissions_info’ column of a downloaded pr.points 
data.frame. Figure  1 illustrates the use of malariaAtlas 
to download and visualise PR survey points, including 
maps of (a) the full database of available P. falciparum PR 
points at the time of publication (Fig. 1a, b) all PR survey 
points hosted by MAP from Tanzania (Fig. 1b).

Analogous to the functions described above, list-
Shp, getShp and autoplot.mapShp allow users to down-
load and visualise the set of shapefiles collated by MAP 
(see Table  2). listShp returns a data.frame indicating all 
administrative regions covered by these shapefiles along 
with their administrative level and corresponding parent 
administrative unit. getShp returns either a SpatialPo-
lygons object or mapShp object (as chosen by the user) 
containing polygons at either ADMIN0 (national) or 
ADMIN1 (state; province) levels for any given country; 
and down to ADMIN3 level for some malaria-endemic 
countries. Quick visualisation of mapShp objects is pos-
sible through an autoplot method.

Rasters are the final datatype available to download and 
visualise using malariaAtlas via the functions: listRaster, 
getRaster and autoplot.mapRaster. listRaster returns a 
data.frame that serves as a catalogue of rasters available 
to download using getRaster, mirroring the catalogue of 
rasters available on MAP’s online interactive explorer 
tool (map.ox.ac.uk/explorer). This data.frame includes 
columns that provide descriptive metadata including an 
abstract outlining raster content, a citation to the original 
publication associated with a given raster, and the time 
period covered for time-varying raster datasets. getRaster 
provides the means to download one or more raster lay-
ers at a time, queried by location (using either an input 
SpatialPolygon shapefile or a user-defined extent (xmin, 
xmax, ymin, ymax)), and year (for temporally dynamic 

raster datasets). The data is returned as a Raster* object: 
a RasterLayer for a single raster; a RasterBrick for two 
or more rasters of the same extent/resolution; or a list 
of Raster* objects for two or more rasters of differing 
extents/resolutions. Downloaded rasters represent the 
mean predicted value from various geostatistical models. 
For further information on specific modelling approaches 
and/or associated uncertainty of predicted values users 
are encouraged to consult the associated publication 
(citation information available via listRaster) or to con-
tact MAP directly. The utility function as.mapRaster 
converts any object downloaded using getRaster into 
a mapRaster object (long-format data.frame with col-
umns x, y, z (longitude, latitude, value) and raster_name) 
enabling tabular manipulation and ggplot-friendly visu-
alisation. Quick visualization of mapRaster objects is 
provided via included autoplot methods. Figure 1c illus-
trates example code used to download and quickly visual-
ise a raster for a given shapefile extent via malariaAtlas.

Data manipulation and utility functions
Three additional utility functions have been added to 
provide an easy means to perform common data manipu-
lations. extractRaster allows users to download values 
from MAP rasters at specific point locations supplied 
in a user-specified set of coordinates (see malariaAtlas 
Vignette; [27]). This enables users to input a list of loca-
tions (latitude, longitude) and get back the associated ras-
ter value (e.g. malaria prevalence) for each location. as.
mapShp and as.mapRaster provide a means of convert-
ing between Spatial* class objects (for polygon data) or 
Raster* class objects (for raster data) to the malariaAtlas 
data.frame-based object classes mapShp and mapRaster 
respectively. This permits tabular manipulation and 
ggplot-friendly plotting through provided autoplot meth-
ods. convertPrevalence is an additional utility function 
that provides a principled approach to age-standardi-
zation of malaria prevalence data [43], based on models 
defined by Smith et al. [28] for P. falciparum and Geth-
ing et al. [30] for P. vivax. Altogether, the above functions 
provide a simple means of downloading, visualising and 
manipulating spatial malariometric data. The flexibility 
of R as a statistical software platform and the wealth of 
existing R packages enable users to easily extend their 
analysis beyond these functions and integrate malariaAt-
las into more complex analytical workflows.

(See figure on next page.)
Fig. 1  Using malariaAtlas to download and visualise geolocated parasite rate data and modelled raster data. a malariaAtlas-derived map of the 
full PfPR database available to download using getPR. Points are coloured according to PR value and sized according to sample size. Grey points 
illustrate confidential data. b Map of all PR points from The United Republic of Tanzania hosted by MAP for both Plasmodium falciparum and 
Plasmodium vivax. c Rasters of estimated spatial distribution of PfPR in Mozambique in 2000, 2005, 2010 and 2015 from Bhatt et al. [8]. For all panels, 
the malariaAtlas R code used to download and visualise the relevant data is included below the map
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Zoon modules
To further aid the dissemination and use of these data, 
malariaAtlas modules were developed for the species 
distribution modelling software zoon [44]. Zoon provides 
a modular framework for species distribution model-
ling, allowing users to collect and model data in a simple 
pipeline. Species distribution modelling is a subfield of 
ecology in which the spatial distribution of an organism 
is estimated from known presence and absence (if avail-
able) locations. There are strong parallels between spe-
cies distribution modelling and parasite rate mapping as 
both use binomial data to estimate a spatial probability 
surface; in species distribution modelling this surface is 
the probability of species occurrence while in parasite 
rate mapping the surface is probability of infection. Two 
zoon modules have been added (‘malariaAtlas_PR’ and 
‘malariaAtlas_covariates’) allowing parasite rate surveys 
to be used as response data and raster data to be used as 
covariates within a zoon workflow. The parasite rate data 

(PvPR) survey points and covariate raster data were 
downloaded using malariaAtlas (see Box  1) and used 
to fit a Bayesian geostatistical model of malaria risk (see 
full example code in Additional file  1). For illustrative 
purposes, an arbitrary spatial extent was chosen for this 
analysis. All PvPR points in the study area were down-
loaded using getPR, and then subsetted to only pub-
licly available data for analysis. convertPrevalence was 
used to standardize values to all-ages PvPR (see Fig. 2a; 
Box 1). The R-INLA package [45, 46] was used to fit a 
Bayesian geostatistical model with a binomial likeli-
hood to these data. Covariate data included rasters of 
environmental factors (night-time land surface temper-
ature [47]; log elevation [48]; rainfall [49]) and log travel 
time to the nearest city (downloaded using getRaster as 
in Box 1, hereafter referred to as ‘human accessibility’; 
[41]). These fixed effects were given minimally informa-
tive (INLA default) priors.

offers a useful benchmark dataset for testing new meth-
ods. However, state-of-the-art models of malaria preva-
lence (e.g. [8]) are currently beyond the scope of zoon, 
and as such zoon is not expected to be directly used for 
risk mapping and/or policymaking.

Mock analysis 1: predicting the spatial distribution 
of Plasmodium vivax using malariaAtlas‑derived response 
and covariate data
The first mock analysis illustrates the use of malariaAt-
las to download response and covariate data for use in 
spatial epidemiological analysis. P. vivax parasite rate 

The spatial autocorrelation in the data was modelled 
using a continuous, spatial Gaussian random field with 
a Matern covariance function [45]. The hyperparame-
ters of the random field were given Penalised Complex-
ity (PC) priors, which by design prefer a simpler model 
with a smoother random field [50]. The hyperparam-
eters of the random field are the range (the distance 
within which the correlation of the field is essentially 
zero) and the standard deviation (the amount the field 
can vary). For the current model, the priors on these 
values were parameterised by setting the probability 
that the range of the field was smaller than an extreme 
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minimum value (2 decimal degrees) as 0.01 and the 
probability that the standard deviation of the field was 
greater than an extreme maximum value (2.7) as 0.01. 
A random field with a standard deviation of 2.7 would 
be able to explain all the residual variance from a pre-
viously fitted logistic regression. The above prior was 
thus defined such that this undesirable level of overfit-
ting was unlikely.

The fitted model was used to predict PvPR across the 
spatial extent of the study area (see Fig.  2b). Within 
this model, night-time temperature and elevation 
were significant predictors of PvPR (estimated coeffi-
cients (95% CI) of − 0.98 (− 1.70 to − 0.30) and − 1.43 
(− 2.69 to − 0.38) respectively), while human accessi-
bility did not significantly predict PvPR (− 0.16 (− 0.44 
to 0.16)). Overall interpretation of these results is lim-
ited due to its small sample size and arbitrary spatial 
extent. Nevertheless, this mock analysis illustrates the 
use of malariaAtlas to download spatial malariometric 
response and covariate data for incorporation into fur-
ther analysis.

Mock analysis 2: testing a new modelling approach using 
in‑built malariaAtlas zoon modules
The second mock analysis demonstrates how malari-
aAtlas can be used to access malariometric data within 
a zoon workflow [44]. As an illustrative example, this 

analysis investigates whether including mosquito 
occurrence data can improve predictive models of 
PfPR, using data from a second arbitrary study area 
(bounded by latitudes of − 24 and − 15 and longitudes 
of 44 and 49). A simple spatial validation scheme was 
implemented, using PfPR data from north of latitude 
− 20 (28,921 individuals from 208 locations) as a hold-
out validation data set. Logistic regression models were 
fitted to two datasets and their predictive performance 
was compared. The first data set was simply the PfPR 
data from 116 locations and 8546 individuals south of 
latitude − 20. The second dataset was comprised of the 
same PfPR data with the addition of known occurrence 
locations of Anopheles arabiensis and Anopheles gam-
biae collected from the Global Biodiversity Information 
Facility [51], treating each vector occurrence location 
as equivalent to a single positive case of P. falciparum 
(total 147 locations and 8592 individuals/mosquitoes; 
see Fig.  3a). For covariates, WorldClim layers 1, 4, 12 
and 15 (mean and within-year variation of temperature 
and precipitation [49]) as well as human accessibility 
[41] were used. PfPR data and human accessibility ras-
ters were downloaded using malariaAtlas zoon mod-
ules (see Box  2). Model performance was compared 
using the AUC (Area Under the Curve) model evalua-
tion criterion which assessed the ability of each model 
to correctly assign an infected/non-infected status to 
individuals in the hold-out set. 

Fig. 2  Predicting the spatial distribution of Plasmodium vivax using malariaAtlas-derived response and covariate data. a Map illustrating locations of 
age-standardised PvPR survey points within the study area as used for response data in mock analysis 1. River locations were downloaded from the 
Global Lakes and Wetlands Database [52]. b Predicted Plasmodium vivax parasite rate within the study area. Predictions are derived from a Bayesian 
geostatistical model using data in panel a and environmental covariates including night-time temperature, elevation and rainfall. Both maps 
were produced using malariaAtlas’ autoplot methods and ggplot2 [42]. Absolute values were removed from the colour scales to reflect the purely 
illustrative nature of this analysis
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Fig. 3  Including mosquito occurrence data alongside PR survey data in models of Plasmodium falciparum parasite rate. a Map of geolocated input 
data, PR points (coloured circles) were obtained from MAP using the malariaAtlas_PR zoon module; mosquito presence data (red triangles) were 
obtained from GBIF using the SpOcc zoon module [44, 51, 53]. b, c Predicted Plasmodium falciparum parasite rate from logistic regression models 
using either PR data only (b) or PR data and mosquito occurrence data (c). Maps were produced using malariaAtlas’ autoplot methods and ggplot2 
[42]. Absolute values were removed from the colour scales to reflect the purely illustrative nature of this analysis

Including mosquito occurrence data very marginally 
improved predictive performance. AUC was 0.577 with-
out mosquito occurrence data and 0.578 with the addi-
tion of mosquito data. Maps created using both models 
are shown in Fig.  3b, c showing almost identical out-
comes. It is worth noting that the difference in model 

performance has no practical relevance. However, this 
serves as an illustrative example of how malariaAtlas 
data can be used within zoon to test new methods. Larger 
scale comparisons, and a less naive approach to incorpo-
rating mosquito data, would be needed to truly examine 
whether this method has analytical merit.
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Conclusions
malariaAtlas is the first open-access R-interface to 
malariometric data, providing a new and reproducible 
means of accessing this data within a freely available and 
commonly used statistical software environment. As 
such, by using malariaAtlas, any individual with inter-
net access can directly download, visualise and analyse 
data from the Malaria Atlas Project. Furthermore, this 
package is designed to fit into existing research work-
flows, enabling importation of multiple data-types in a 
few simple lines of code, as illustrated in the mock analy-
ses above. As the MAP data estate continues to grow, 
malariaAtlas will offer an up-to-date interface to the 
most recent malariometric data. Future updates will seek 
to provide access to additional data-types (e.g. publicly 
reported routine surveillance data; site-level geolocated 
survey data of other types such as prevalence data for 
glucose-6-phosphate dehydrogenase deficiency and the 
Duffy negative blood group; and new raster datasets such 
as modelled resistance to the insecticides used in malaria 
control). Future updates will also include the option 
for date-specific data queries (e.g. ‘download data as at 
01/04/2018’), enabling truly reproducible data download 
irrespective of potential amendments to the source data-
base. malariaAtlas rests upon decades of valuable col-
laboration and data-sharing within the malaria research 
community. By providing a new means of open-access 
to malariometric data it is hoped that this package both 
contributes to this environment of open data-sharing 
and also provides a valuable tool to malaria researchers 
worldwide.

Additional file

Additional file 1. Illustrative R code used to conduct the Mock Analyses 
in this paper.
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