289 research outputs found
The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster
The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity
Recommended from our members
Emergent order in the kagome Ising magnet DyMgSbO
The Ising model-in which degrees of freedom (spins) are binary valued (up/down)-is a cornerstone of statistical physics that shows rich behaviour when spins occupy a highly frustrated lattice such as kagome. Here we show that the layered Ising magnet DyMgSbO hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements reveal a phase transition at ~0.3 K from a disordered spin-ice-like regime to an emergent charge ordered state, in which emergent magnetic charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Monte Carlo simulations show that an interplay of inter-layer interactions, spin canting and chemical disorder stabilizes this state. Our results establish DyMgSbO as a tuneable system to study interacting emergent charges arising from kagome Ising frustration.Work at Cambridge was supported through the Winton Programme for the Physics of Sustainability. The work of J.A.M.P., X.B. and M.M. and facilities at Georgia Tech were supported by the College of Sciences through M.M. start-up funds. J.A.M.P. gratefully acknowledges Churchill College, Cambridge for the provision of a Junior Research Fellowship. H.S.O. acknowledges a Teaching Scholarship (Overseas) from the Ministry of Education, Singapore. J.O.H. is grateful to the Engineering and Physical Sciences Research Council (EPSRC) for funding. C.C. was supported by EPSRC Grant No. EP/G049394/1, and the EPSRC NetworkPlus on βEmergence and Physics far from Equilibriumβ. Experiments at the ISIS Pulsed Neutron and Muon Source were supported by a beamtime allocation from the Science and Technology Facilities Council. This work utilized facilities at the NIST Center for Neutron Research. Monte Carlo simulations were performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/) and the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk/, for which access was provided by an ARCHER Instant Access scheme)
Manipulable Objects Facilitate Cross-Modal Integration in Peripersonal Space
Previous studies have shown that tool use often modifies one's peripersonal space β i.e. the space directly surrounding our body. Given our profound experience with manipulable objects (e.g. a toothbrush, a comb or a teapot) in the present study we hypothesized that the observation of pictures representing manipulable objects would result in a remapping of peripersonal space as well. Subjects were required to report the location of vibrotactile stimuli delivered to the right hand, while ignoring visual distractors superimposed on pictures representing everyday objects. Pictures could represent objects that were of high manipulability (e.g. a cell phone), medium manipulability (e.g. a soap dispenser) and low manipulability (e.g. a computer screen). In the first experiment, when subjects attended to the action associated with the objects, a strong cross-modal congruency effect (CCE) was observed for pictures representing medium and high manipulability objects, reflected in faster reaction times if the vibrotactile stimulus and the visual distractor were in the same location, whereas no CCE was observed for low manipulability objects. This finding was replicated in a second experiment in which subjects attended to the visual properties of the objects. These findings suggest that the observation of manipulable objects facilitates cross-modal integration in peripersonal space
The Fastest Flights in Nature: High-Speed Spore Discharge Mechanisms among Fungi
BACKGROUND: A variety of spore discharge processes have evolved among the fungi. Those with the longest ranges are powered by hydrostatic pressure and include "squirt guns" that are most common in the Ascomycota and Zygomycota. In these fungi, fluid-filled stalks that support single spores or spore-filled sporangia, or cells called asci that contain multiple spores, are pressurized by osmosis. Because spores are discharged at such high speeds, most of the information on launch processes from previous studies has been inferred from mathematical models and is subject to a number of errors. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have used ultra-high-speed video cameras running at maximum frame rates of 250,000 fps to analyze the entire launch process in four species of fungi that grow on the dung of herbivores. For the first time we have direct measurements of launch speeds and empirical estimates of acceleration in these fungi. Launch speeds ranged from 2 to 25 m s(-1) and corresponding accelerations of 20,000 to 180,000 g propelled spores over distances of up to 2.5 meters. In addition, quantitative spectroscopic methods were used to identify the organic and inorganic osmolytes responsible for generating the turgor pressures that drive spore discharge. CONCLUSIONS/SIGNIFICANCE: The new video data allowed us to test different models for the effect of viscous drag and identify errors in the previous approaches to modeling spore motion. The spectroscopic data show that high speed spore discharge mechanisms in fungi are powered by the same levels of turgor pressure that are characteristic of fungal hyphae and do not require any special mechanisms of osmolyte accumulation
Body Mass Index and Employment-Based Health Insurance
<p>Abstract</p> <p>Background</p> <p>Obese workers incur greater health care costs than normal weight workers. Possibly viewed by employers as an increased financial risk, they may be at a disadvantage in procuring employment that provides health insurance. This study aims to evaluate the association between body mass index [BMI, weight in kilograms divided by the square of height in meters] of employees and their likelihood of holding jobs that include employment-based health insurance [EBHI].</p> <p>Methods</p> <p>We used the 2004 Household Components of the nationally representative Medical Expenditure Panel Survey. We utilized logistic regression models with provision of EBHI as the dependent variable in this descriptive analysis. The key independent variable was BMI, with adjustments for the domains of demographics, social-economic status, workplace/job characteristics, and health behavior/status. BMI was classified as normal weight (18.5β24.9), overweight (25.0β29.9), or obese (β₯ 30.0). There were 11,833 eligible respondents in the analysis.</p> <p>Results</p> <p>Among employed adults, obese workers [adjusted probability (AP) = 0.62, (0.60, 0.65)] (<it>P </it>= 0.005) were more likely to be employed in jobs with EBHI than their normal weight counterparts [AP = 0.57, (0.55, 0.60)]. Overweight workers were also more likely to hold jobs with EBHI than normal weight workers, but the difference did not reach statistical significance [AP = 0.61 (0.58, 0.63)] (<it>P </it>= 0.052). There were no interaction effects between BMI and gender or age.</p> <p>Conclusion</p> <p>In this nationally representative sample, we detected an association between workers' increasing BMI and their likelihood of being employed in positions that include EBHI. These findings suggest that obese workers are more likely to have EBHI than other workers.</p
An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz
At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the
bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of
multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits
to the TDE light curve indicate a black hole mass β106 M, disrupting a star of β1 M. By analysing our comprehensive UV,
optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L β t
2,
consistent with a photosphere expanding at constant velocity (2000 km sβ1), and a line-forming region producing initially
blueshifted H and He II profiles with v = 3000β10 000 km sβ1. The fastest optical ejecta approach the velocity inferred from
radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be
responsible for both the fast optical rise and the radio emission β the first time this connection has been observed in a TDE.
The light-curve rise begins 29 Β± 2 d before maximum light, peaking when the photosphere reaches the radius where optical
photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at
constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N III) become
prominent, implying a source of far-UV photons, while the X-ray light curve peaks at β1041 erg sβ1. Assuming that these X-rays
are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the
large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow
models
Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program
This is a white paper that originated from an open discussion at the Enabling Transiting Exoplanet Science with JWST workshop held November 16 - 18, 2015 at STScI (http://www.stsci.edu/jwst/science/exoplanets). Accepted for publication in PASPThis is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed "community targets") that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations.(Abridged)K.B.S. recognizes support from the Sagan Fellowship Program, supported by NASA and administered by the NASA Exoplanet Science Institute (NExScI)
An Anatomy Massive Open Online Course as a Continuing Professional Development Tool for Healthcare Professionals
Massive open online courses (MOOCs) remain a novel and under-evaluated learning tool within anatomical and medical education. This study aimed to provide valuable information by using an anatomy MOOC to investigate the demographic profile, patterns of engagement and self-perceived benefits to healthcare professionals. A 21-item survey aimed at healthcare professionals was embedded into the Exploring Anatomy: The Human Abdomen MOOC, in April 2016. The course attracted 2711 individual learners with 94 of these completing the survey, and 79 of those confirming they worked full- or part-time as healthcare professionals. Variations in use across healthcare profession (allied healthcare professional, nurse or doctor) were explored using a Fisherβs exact test to calculate significance across demographic, motivation and engagement items; one-way ANOVA was used to compare self-perceived benefits. Survey data revealed that 53.2% were allied healthcare professionals, 35.4% nurses and 11.4% doctors. Across all professions, the main motivation for enrolling was to learn new things in relation to their clinical practice, with a majority following the prescribed course pathway and utilising core, and clinically relevant, material. The main benefits were in relation to improving anatomy knowledge, which enabled better support for patients. This exploratory study assessing engagement and self-perceived benefits of an anatomy MOOC has shown a high level of ordered involvement, with some indicators suggesting possible benefits to patients by enhancing the subject knowledge of those enrolled. It is suggested that this type of learning tool should be further explored as an approach to continuing professional, and interprofessional, education
Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity.
Published versio
Cognitive Control Reflects Context Monitoring, Not Motoric Stopping, in Response Inhibition
The inhibition of unwanted behaviors is considered an effortful and controlled ability. However, inhibition also requires the detection of contexts indicating that old behaviors may be inappropriate β in other words, inhibition requires the ability to monitor context in the service of goals, which we refer to as context-monitoring. Using behavioral, neuroimaging, electrophysiological and computational approaches, we tested whether motoric stopping per se is the cognitively-controlled process supporting response inhibition, or whether context-monitoring may fill this role. Our results demonstrate that inhibition does not require control mechanisms beyond those involved in context-monitoring, and that such control mechanisms are the same regardless of stopping demands. These results challenge dominant accounts of inhibitory control, which posit that motoric stopping is the cognitively-controlled process of response inhibition, and clarify emerging debates on the frontal substrates of response inhibition by replacing the centrality of controlled mechanisms for motoric stopping with context-monitoring
- β¦