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Emergent order in the kagome Ising magnet
Dy3Mg2Sb3O14
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The Ising model—in which degrees of freedom (spins) are binary valued (up/down)—is a

cornerstone of statistical physics that shows rich behaviour when spins occupy a highly

frustrated lattice such as kagome. Here we show that the layered Ising magnet

Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers

of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements reveal a

phase transition at B0.3 K from a disordered spin-ice-like regime to an emergent charge

ordered state, in which emergent magnetic charge degrees of freedom exhibit three-

dimensional order while spins remain partially disordered. Monte Carlo simulations show that

an interplay of inter-layer interactions, spin canting and chemical disorder stabilizes this state.

Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent

charges arising from kagome Ising frustration.
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T
he kagome lattice—a two-dimensional (2D) arrangement
of corner-sharing triangles—is at the forefront of
the search for exotic states generated by magnetic

frustration. Such states have been observed experimentally for
Heisenberg1–4 and planar5–7 spins. If Ising spins lie within
kagome planes and point either towards or away from the centre
of each triangle, the potential for emergent behaviour is shown
by considering a spin (magnetic dipole) as two separated þ and
�magnetic charges: the emergent charge T of a triangle is
defined as the algebraic sum over the three charges it cont-
ains (Fig. 1a)8. Ferromagnetic nearest-neighbour interactions
favour T ¼ � 1 states, yielding six degenerate states on each
triangle. This macroscopic ground-state degeneracy leads to a
zero-point entropy S0E1

3 ln 9
2R per mole of Dy (where R is the

molar gas constant), and suppresses spin order9, in analogy to
three-dimensional (3D) spin-ice materials10,11. The long-range
magnetic dipolar interaction generates an effective Coulomb
interaction between emergent charges, driving a transition to an
emergent charge ordered (ECO) state that is absent for nearest-
neighbour interactions alone8,12. In this state, þ and � charges
alternate, but the remaining threefold degeneracy of spin states
for each charge means that spin order is only partial (Fig. 1b).
The ECO state has two bulk experimental signatures: non-zero
entropy S0E0.11R per mole of Dy12, and the presence of both
Bragg and diffuse magnetic scattering in neutron-scattering
measurements13,14. Experimentally, kagome ECO states have
been observed in spin-ice materials under applied magnetic
field15,16 and nano-fabricated systems in the 2D limit14,17–19.
However, a crucial experimental observation has remained
elusive—namely, observation of the spatial arrangement of
emergent charges in a bulk kagome material.

In this article, we show that an ECO state exists at low
temperature in the recently-reported bulk kagome magnet
Dy3Mg2Sb3O14 (ref. 20). Our experimental evidence derives
from neutron-scattering and thermodynamic measurements,
while Monte Carlo (MC) simulations reveal that this ECO state
is stabilized by a combination of interactions between kagome
layers, spin canting out of kagome layers and chemical disorder.

Results
Structural and magnetic characterization. Structural and mag-
netic characterization suggests that Dy3Mg2Sb3O14 (ref. 20) is an
ideal candidate for an ECO state. The material crystallizes in a
variant of the pyrochlore structure (space group R�3m20) in which
kagome planes of magnetic Dy3þ alternate with triangular layers
of non-magnetic Mg2þ (Fig. 1c). X-ray and neutron powder
diffraction measurements confirm the absence of a structural
phase transition to t0.2 K (Supplementary Figs 1 and 2 and
Supplementary Tables 1 and 2) and reveal a small amount of site
disorder in our sample, with 6(2)% of Dy kagome sites occupied
by Mg (and 18(6)% of Mg sites occupied by Dy). Curie-Weiss fits
to the magnetic susceptibility (Fig. 1d) yield a Curie-Weiss
constant yCW¼ � 0.1(2) K for fitting range 5rTr50 K,
consistent with ref. 20 (however, the value depends strongly on
fitting range). Demagnetization effects may also be significant—
increasing yCW by 1.4 K in spin-ice materials21—but cannot be
quantitatively determined for a powder sample. The local Dy
environment in Dy3Mg2Sb3O14 is similar to the cubic spin ice
Dy2Ti2O7 (ref. 22) (Supplementary Fig. 3), suggesting that Dy3þ

spins have an Ising anisotropy axis directed into or out of the
kagome triangles with an additional component perpendicular to
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Figure 1 | Ising spins on the kagome lattice. (a) Relationship between spin vectors (arrows), magnetic dipoles (connected red and blue spheres) and

emergent charge T of a triangle (labelled ± or ±3). (b) Example of a microstate showing emergent charge order (ECO). (c) Partial crystal structure of

Dy3Mg2Sb3O14, showing kagome Dy1� xMgx site (blue spheres) and triangular Mg1� 3xDy3x site (orange spheres), where x¼0.06(2) for the sample of

Dy3Mg2Sb3O14 studied here. (d) Magnetic susceptibility data w(T) measured in an applied field m0H¼0.01 T after zero-field cooling (left axis; black

squares), inverse magnetic susceptibility data w� 1 (right axis; orange circles) and Curie-Weiss fit over the range 5rTr50 K (blue line). (e) Dependence of

magnetization M on applied magnetic field m0H at different temperatures (labelled above each curve) and fits to the paramagnetic Ising model. Data are

shown as solid coloured lines and fits as white dashed lines (note the nearly perfect agreement: as plotted the fit lines are indistinguishable from the data).

In d,e, standard errors are derived from fits to the magnetization and are smaller than the symbol size or line width in the plots.
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the kagome planes. Experimentally, we confirm Ising anisotropy
at low temperatures using isothermal magnetization
measurements, which are ideally described by paramagnetic
Ising spins with magnetic moment m¼ 10.17(8) mB per Dy
(Fig. 1e). Moreover, our inelastic neutron-scattering
measurements show that the ground-state Kramers doublet is
separated from the first excited crystal-field state by at least 270 K
(Supplementary Fig. 4), indicating that crystal-field excitations
are negligible at the low temperatures (r50 K) we consider.

Low-temperature spin correlations. The magnetic specific heat
Cm(T) shows that spin correlations start to develop below 5 K and
culminate in a large anomaly at T*¼ 0.31(1) K that we attribute
to a magnetic phase transition (Fig. 2a and Supplementary Fig. 5).
Below 0.20 K, the spins fall out of equilibrium, as is also reported
in spin-ice materials23. In zero applied field, the entropy change
DSm(T) from 0.2 K to T¼ 10 K is slightly less than the expected
Rln2 for random Ising spins; however, the full Rln2 entropy is
recovered in a small applied field of 0.5 T. The 0.05(3)R difference
between DSm(10 K) in zero field and in a 0.5 T field could be
explained either by ECO (with entropy 0.11R in the 2D case12), or
by the B6% randomly-oriented orphan Dy spins on the Mg site
(with entropy 0.06 Rln2). Neutron-scattering experiments on a
powder sample of 162Dy3Mg2Sb3O14 distinguish these two scen-
arios by revealing the microscopic processes at play across T*.

Figure 2b shows magnetic neutron-scattering data at 0.5 K
(above T*) and at the nominal base temperature of 0.03 K
(below T*). At 0.5 K, our data show magnetic diffuse scattering
only, with a broad peak centred at E0.65 Å� 1 that is
characteristic of ice-rule correlations in structurally related
pyrochlore magnets24. In contrast, at 0.03 K, strong magnetic
diffuse scattering is observed in addition to magnetic Bragg peaks.
These peaks develop at Tr0.35 K; that is, as T* is crossed. No
additional peaks are observed on further cooling and the
magnetic scattering does not change between 0.1 and 0.03 K.
Between 0.03 and 50 K, the scattering is purely elastic within our
maximum experimental resolution of E17meV (Supplementary
Fig. 6), indicating that the spins fluctuate on a timescale longer
than B0.2 ns. Our 0.03 K data suggest two immediate
conclusions. First, the magnetic Bragg peaks are described by
the propagation vector k¼ 0; that is, order preserves the
crystallographic unit cell below T*. Second, a large fraction
of the magnetic scattering is diffuse; hence, correlated spin
disorder persists below T* and involves the majority of spins.
These results cannot be explained by only a small fraction of
orphan spins, but are consistent with an ECO state13,14.

Average magnetic structure. We use reverse Monte Carlo (RMC)
refinement25,26 to fit spin microstates to data collected between
0.03 and 4 K. A single RMC microstate can capture both the
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Figure 2 | Low-temperature magnetism of Dy3Mg2Sb3O14. (a) Magnetic heat capacity divided by temperature Cm/T (left axis; black points) and magnetic

entropy change DSm(T) (right axis; orange curves). Zero-field data and data measured in applied field m0H¼0.5 T are shown (fields labelled on each curve).

Error bars represent the addition of statistical and systematic uncertainties, where statistical uncertainty is calculated from a least-squares fit of the

measured data to a two-timescale relaxation model, and systematic uncertainty is calculated assuming a 5% error on the sample mass. (b) Magnetic

neutron-scattering data (black circles) at T¼0.03 K and 0.5 K obtained by subtracting a high-temperature (50 K) measurement as background, fits from

reverse Monte Carlo (RMC) refinements (red lines) and data� fit (blue lines). The 0.5 K curves are vertically shifted by 10 barn sr� 1 Dy� 1 for clarity. Error

bars on neutron-scattering data indicate one standard error propagated from neutron counts. (c) Magnetic Bragg scattering obtained as the difference

between 0.03 and 0.5 K data (black circles), fit from Rietveld refinement (red line) and difference (blue line). The inset shows the model of the average

magnetic structure obtained from Rietveld refinement. (d) The vector average of the three microstates that are equally occupied in a ECO state yields an

average all-in/all-out structure with ordered moment mavg¼m/3, consistent with experimental observations.
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average spin structure responsible for Bragg scattering and the
local deviations from the average responsible for diffuse scattering
(Fig. 2b and Supplementary Fig. 7). We determine the average
spin structure by two methods: first, by averaging refined RMC
microstates onto a single unit cell; second, by using a combination
of symmetry analysis and Rietveld refinement to model the
magnetic Bragg profile (obtained as the difference between 0.03
and 0.5 K data) (Fig. 2c). Details of the Rietveld refinements are
given in Supplementary Note 1. Both approaches yield the same
all-in/all-out average spin structure (inset to Fig. 2c and Supple-
mentary Fig. 8). The ordered magnetic moment at 0.03 K,
mavg¼ 2.82(4) mB per Dy, is much less than the total moment of
mE10 mB. These results are consistent with ECO: Fig. 2d shows
that averaging over the three possible ECO microstates for a given
triangle generates an all-in/all-out average structure, as observed
experimentally; moreover, the expected ordered moment for
ECO, m/3E3.3 mB per Dy13, is in general agreement with the
measured value of 2.82(4) mB per Dy.

Evidence for emergent charge order. To look for signatures of
ECO in real space, we compare the temperature evolution of mavg

with the percentage of T ¼ � 3 charges (Fig. 3a). The latter
quantity, f±3, takes a value of 25% for random spins, 100% for an
all-in/all-out microstate, and 0% for a microstate that fully obeys
the T ¼ � 1 ice rule. The value of f±3 extracted from RMC
refinements decreases with lowering temperature to a minimum
value of o5% below 1 K; these values represent upper bounds
because RMC refinements were initialized from random micro-
states. Crucially, below T*, the T ¼ � 1 rule is obeyed while mavg

is non-zero (Fig. 3a); this coexistence of ice-rule correlations with
an all-in/all-out average structure is a defining feature of the ECO
state13,14. We confirm ECO by calculating the charge-correlation
function T 0ð ÞT rabð Þh i, the average product of charges separated
by radial distance rab on the honeycomb lattice formed by the
triangle midpoints. At 0.5 K, this function decays with increasing
rab, indicating that T ¼ � 1 charges are disordered (Fig. 3b). At
0.03 K, T 0ð ÞT rabð Þh i shows two key features that indicate an
ECO state: a diverging correlation length, and an alternation in
sign with a negative peak at the nearest-neighbour distance
(Fig. 3c). The magnitude of T 0ð ÞT rabð Þh i found experimentally
(E0.6¼ (0.94� 3mavg/m)2) is smaller than the value of unity
corresponding to an ideal ECO state, which indicates that the
alternation of charges contains some errors; we show below this is
probably due to the presence of site disorder.

Explanation of emergent charge order. Why does Dy3Mg2

Sb3O14 show fundamentally the same ECO as predicted for a 2D
kagome system of in-plane Ising spins? This is far from obvious,
because the real material differs from the existing model8 in three
respects: (i) the spins are canted at an angle of 26(2)� to the
kagome planes, (ii) the planes are layered in 3D and (iii) there is
Dy/Mg site disorder (Fig. 2c). This puzzle is elucidated by Monte
Carlo simulations for a minimal model containing the nearest-
neighbour exchange interaction J¼ � 3.72 K determined for
structurally-related Dy2Ti2O7 (refs 22,27), and the long-range
magnetic dipolar interaction D¼ 1.28 K calculated from experi-
mentally determined Dy–Dy distances. In 2D, spin canting
interpolates between two limits—an ECO transition followed by
lower-temperature spin ordering for in-plane spins8, and a single
spin-ordering transition for spins perpendicular to kagome
planes28—and hence destabilizes ECO compared with the 2D
in-plane limit. In contrast, the stacking of kagome planes
stabilizes 3D ECO—uniquely minimizing the effective Coulomb
interaction between emergent charges—but leaves the spin-
ordering transition temperature essentially unchanged. The

effect of random site disorder is shown in Fig. 3d. Disorder
broadens the specific-heat anomalies and suppresses the
ECO transition temperature. In spite of this, we find that
a distinct ECO phase persists for 6% Mg on the Dy site; that is,
the estimated level of disorder present in our sample of
Dy3Mg2Sb3O14. Moreover, simulated magnetic specific-heat
(Fig. 3d) and powder neutron-scattering (Supplementary Fig. 9)
curves with B4 to 6% Mg on the Dy site show remarkably good
agreement with experimental data, especially given that J is not
optimized for Dy3Mg2Sb3O14 .

Implications of emergent charge order. An ECO microstate can
be coarse-grained into a magnetization field with two compo-
nents: the all-in/all-out average spin structure with non-zero
divergence, and the local fluctuations from the average that are
captured by (divergence-free) dimer configurations on the dual
honeycomb lattice13. These two components are independent,
which leads to descriptions of the ECO state in terms of spin
fragmentation13,14. Without site disorder, the fluctuating
component yields pinch-point features in single-crystal diffuse-
scattering patterns, the signature of a Coulomb phase13,29.
Figure 3e shows that the introduction of site disorder blurs the
pinch points and reduces the magnitude of the ordered moment
in the ECO phase. We find good overall agreement between
patterns from model simulations with B4 to 6% Mg on the Dy
site and from RMC microstates refined to powder data (Fig. 3e).
These results suggest that pinch-point scattering could be
observed in single-crystal samples of Dy3Mg2Sb3O14 with low
levels of disorder. Our simulations also suggest why a transition
from ECO to spin ordering is not observed experimentally:
single-spin-flip dynamics (arguably more appropriate to real
materials) become frozen in the ECO state and non-local (loop)
dynamics are required to observe the spin-ordering transition in
Monte Carlo simulations.

Discussion
The ECO state in Dy3Mg2Sb3O14 is the first realization of
ordering of emergent degrees of freedom in a solid-state kagome
material. Phase transitions driven by emergent excitations are
rare—related examples being the critical end-point in spin
ice11,30,31 and the recent report of spin fragmentation in
pyrochlore Nd2Zr2O7 (ref. 32). Moreover, the unusually slow
spin dynamics offer the exciting possibility of measuring finite-
time (Kibble-Zurek) scaling at the ECO critical point31. The ECO
state in Dy3Mg2Sb3O14 presents an intriguing comparison with
other partially ordered magnets. In Gd2Ti2O7, symmetry breaking
yields two inequivalent Gd sites, only one of which orders33,34; in
contrast, in the ECO state, all spins possess both ordered and
disordered components. In Ho3Ga5O12, local antiferromagnetic
correlations coexist with average antiferromagnetic order35,
whereas in the ECO state, the average order is
antiferromagnetic (all-in/all-out) while the local correlations are
ferromagnetic (two-in/one-out or vice versa). Whether the
predicted spin-ordering8 eventually occurs in Dy3Mg2Sb3O14

remains to be seen: spin freezing36,37 or site disorder may prevent
its onset. We expect physical and/or chemical perturbations to
control the properties of Dy3Mg2Sb3O14 ; for example, application
of magnetic field slightly tilted from the c-axis should drive a
Kastelyn transition towards spin-ordering15,16; modified synthesis
conditions may allow the degree of site mixing to be controlled20;
and application of chemical pressure may alter the spin-canting
angle and/or the distance between kagome layers, potentially
generating a novel spin-ordering phase instead of ECO for
sufficiently large canting28. Substitution of Dy3þ by other
lanthanide ions20,38–40 may increase the ratio of exchange to
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dipolar interactions, offering promising routes towards exotic
spin-liquid behaviour: dimensionality reduction by effective layer
decoupling (when exchange dominates over dipolar interactions),
and realization of quantum kagome systems with local spin
anisotropies.

Methods
Sample preparation. Powder samples of Dy3Mg2Sb3O14 were prepared from a
stoichiometric mixture of dysprosium (III) oxide (99.99%, Alfa Aesar*), magne-
sium oxide (99.998%, Alfa Aesar*) and antimony (V) oxide (99.998%, Alfa Aesar*).
For neutron-scattering experiments a B5 g sample isotopically enriched with
162Dy (94.4(2)% 162Dy2O3, CK Isotopes*) was prepared. For all samples, starting
materials were intimately mixed and pressed into pellets before heating at 1,350 �C
for 24 h in air. This heating step was repeated until the amount of impurity phases
as determined by X-ray diffraction was no longer reduced on heating. The enriched
sample contained impurity phases of MgSb2O6 (6.4(5) wt%) and Dy3SbO7

(0.97(8) wt%), the latter of which orders antiferromagnetically at TE3 K (ref. 41).
*The name of a commercial product or trade name does not imply endorsement

or recommendation by the National Institute of Standards and Technology (NIST).

X-ray diffraction measurements. Powder X-ray diffraction was carried out
using a Panalytical Empyrean* diffractometer with Cu Ka radiation (l¼ 1.5418 Å).
Measurements were taken between 5r2yr120� with D2y¼ 0.02�.

*The name of a commercial product or trade name does not imply endorsement
or recommendation by NIST.

Neutron-scattering measurements. Powder neutron diffraction measurements
were carried out on the General Materials (GEM) diffractometer at the ISIS
Neutron and Muon Source, Harwell, UK42, at T¼ 0.50, 0.60, 0.90, 2.0, 4.0, 25 and
300 K. For T¼ 25 and 300 K measurements, around 4.2 g of isotopically enriched
powder was loaded into a f¼ 6 mm vanadium can and cooled in a flow cryostat.
For measurements at Tr25 K, the same sample was loaded into a f¼ 6 mm
vanadium can, which was attached directly to a dilution refrigerator probe and
loaded within a flow cryostat. Inelastic neutron-scattering experiments were carried
out on the Disk Chopper Spectrometer (DCS) at the NIST Center for Neutron
Research, Gaithersburg MD, USA43, at T¼ 0.03, 0.10, 0.20, 0.30, 0.35, and 0.50 K.
Around 1.1 g of isotopically enriched powder was loaded into a f¼ 4.7 mm copper
can and mounted at the base of a dilution refrigerator. The temperature was
measured at the mixing chamber and does not necessarily reflect the sample
temperature for 0.1 and 0.03 K, as the spins progressively fall out of equilibrium.
On DCS, data were measured with incident wavelengths of 1.8, 5 and 10 Å. The
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Figure 3 | Emergent charge order in Dy3Mg2Sb3O14. (a) Temperature evolution of the ordered magnetic moment per Dy, mavg (left axis) and the number
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refinements indicate one standard error from least-squares fitting, and error bars from RMC refinements are derived by assuming 10% uncertainty on the

absolute intensity normalization of the magnetic scattering data. (b) Charge-correlation function T 0ð ÞT rabð Þh i obtained from RMC refinements at 0.5 K,

and (c) T 0ð ÞT rabð Þh i from RMC at 0.03 K. Solid bars show correlation magnitudes, with positive correlations shown in red and negative correlations in

blue. (d) Magnetic heat capacity from MC simulations (system size N¼ 7,776 spins) for different amounts of random site disorder (the % Mg on the Dy

site is labelled above each curve). The uncertainty in the MC results was assessed by computing the standard deviation of statistically-independent

simulations; standard errors are smaller than the symbols in the figures. (e) Single-crystal neutron scattering calculations in the (hk0) plane from MC

simulations at T¼0.2 K for different amounts of random site disorder (the % Mg on the Dy site is labelled on each segment of the plot). The single-crystal

calculation from RMC refinement to 0.03 K powder data (for 6% Mg on the Dy site) is shown for comparison. Separate colour scales are used for the

intensity of the diffuse scattering and the {110} Bragg peaks, and the location of a pinch point is indicated by small white arrows.
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1.8 Å data were used to look for crystal-field excitations (Supplementary Fig. 4).
The 10 Å data were used to look for low-energy quasi-elastic scattering
(Supplementary Fig. 6). The 5 Å data were integrated over the energy range
� 0.15rEr0.15 meV to obtain the total scattering (Supplementary Fig. 10). Data
reduction was performed using the MANTID and DAVE44 programs. All data
were corrected for detector efficiency using a vanadium standard, normalized to
beam current (GEM) or incident beam monitor (DCS), and corrected for
absorption by the sample.

Crystal-structure refinements. Combined Rietveld analysis of the 300 K X-ray
and neutron (GEM) diffraction data was carried out using the FULLPROF suite
of programs45. The individual patterns were weighted so that the total
contribution from X-ray and neutron diffraction was equal; that is, data from each
of the five detector banks on GEM was assigned 20% of the weighting of the
single X-ray pattern. The neutron scattering cross-section for Dy was fixed to
bDy¼ � 0.6040 fm, to reflect the isotopic composition as determined by inductively
coupled plasma mass spectrometry. Peak shapes were modelled using a pseudo-
Voigt function, convoluted with an Ikeda-Carpenter function or an axial
divergence asymmetry function for neutron and X-ray data, respectively.
Backgrounds were fitted using a Chebyshev polynomial function. At 25 K, Rietveld
analysis of only the neutron diffraction data was carried out. In addition to the
impurity phases observed in X-ray diffraction, a small amount (o1 wt%) of
vanadium (IV) oxide from corrosion of the vanadium sample can was also
observed in the neutron-diffraction data. The fit to 300 K data is shown in
Supplementary Fig. 1, refined values of structural parameters are given in
Supplementary Table 1, and selected bond lengths are given in Supplementary
Table 2.

Magnetic measurements. Magnetic susceptibility measurements, w(T)¼M(T)/H,
were made using a Quantum Design* Magnetic Properties Measurement System
(MPMS) with a superconducting interference device (SQUID) magnetometer.
Measurements were made after cooling in zero field (ZFC) and in the measuring
field (FC) of m0H¼ 0.1 T over the temperature range 2rTr300 K. Isothermal
magnetization M(H) measurements were made using a Quantum Design* Physical
Properties Measurement System (PPMS) at selected temperatures 1.6rTr80 K
between � 14rm0Hr14 T. A global fit to the M(H) data for TZ5 K (Fig. 1e) was
performed using the powder-averaged form for free Ising spins,

Mpowder
Ising ¼

m
2

Z 1

� 1
cos yð Þtanh

mH cos y
kBT

� �
d cos yð Þ; ð1Þ

where H is applied magnetic field, and magnetic moment m is the only fitting
parameter21. The fitted value m¼ 10.17(8) mB per Dy is in close agreement with the
expected value of 10.0 mB for a Kramers doublet ground state with g¼ 4/3 and
mJ¼±15/2; in particular, the reduced value of the saturated magnetization,
MsatEm/2, is as expected for powder-averaged Ising spins21.

*The name of a commercial product or trade name does not imply endorsement
or recommendation by NIST.

Heat-capacity measurements. Heat-capacity measurements were carried out on
a Quantum Design* Physical Properties Measurement System instrument using
dilution fridge (0.07rTr4 K) and standard (1.6rTr250 K) probes in a range
of measuring fields, 0rm0Hr0.5 T. To ensure sample thermalization at low
temperatures, measurements were made on pellets of Dy3Mg2Sb3O14 mixed with
an equal mass of silver powder, the contribution of which was measured separately
and subtracted to obtain Cp. The magnetic specific heat Cm was obtained by
subtracting modelled lattice Cl and nuclear Cn contributions from Cp. We obtained
Cl by fitting an empirical Debye model to the 10oTo200 K data, with
yD¼ 272(13) K. To obtain a lower bound on the contact hyperfine and electronic
quadrupolar contributions to Cp

23,46, we used previous experimental results on
dysprosium gallium garnet47, a related material for which these contributions are
known down to T¼ 0.037 K. Correcting for the larger static electronic moment
E4.2 mB of dysprosium gallium garnet compared with hmiZ2.5 mB below 0.2 K for
Dy3Mg2Sb3O14, we obtained the high-temperature tail of the nuclear hyperfine
contributions as Cp¼A/T2 with A¼ 0.0032 J K mol� 1

Dy (Supplementary Fig. 5).
*The name of a commercial product or trade name does not imply endorsement

or recommendation by NIST.

Average magnetic structure analysis. The magnetic Bragg profile was obtained
by subtracting data collected at To0.5 K from the 0.5 K data. Refinements were
carried out using the Rietveld method within the FULLPROF suite of programs45,
as described above. For the magnetic-structure refinement shown in Fig. 2c,
candidate magnetic structures were determined using symmetry analysis48 via the
SARAH49 and ISODISTORT50 programs, as described in Supplementary Note 1.
The average magnetic structure is described by the irreducible representation G3, in
Kovalev’s notation51. The basis vectors of the magnetic structure are given in
Supplementary Table 3 and refined values of structural parameters are given in
Supplementary Table 4.

Magnetic total scattering. To isolate the total magnetic contribution to the
neutron-scattering data, data collected at a high temperature Thigh44yCW

were subtracted from the low-temperature data of interest, where Thigh¼ 25 K
(GEM data) or 50 K (DCS data). For the data obtained below the magnetic
ordering temperature of the Dy3SbO7 impurity phase (E3 K (ref. 41)), a refined
model of the magnetic Bragg scattering of Dy3SbO7 was subtracted, as described
in Supplementary Note 2 (we note that the orthorhombic crystal structure of
Dy3SbO7 (ref. 52) allowed the impurity Bragg peaks to be readily distinguished
from sample peaks). The fit to neutron data of the Dy3SbO7 magnetic-structure
model is shown in Supplementary Fig. 11, the magnetic basis vectors are given
in Supplementary Table 5, and refined values of structural parameters are
given in Supplementary Table 6. The data were placed on an absolute intensity
scale (barn sr� 1 Dy� 1) by normalization to the calculated nuclear Bragg profile at
Thigh.

Reverse Monte Carlo refinements. Refinements to the total (Braggþ diffuse)
magnetic scattering were performed using a modified version of the SPINVERT
program53 available from J.A.M.P. In these refinements, a microstate was generated
as a periodic supercell containing N¼ 7776 Dy3þ spin vectors Si¼msi êi , where
m¼ 10.0 mB is the fixed magnetic moment length, the unit vector êi specifies the
local Ising axis determined from Rietveld refinement, and the Ising variable
si¼±1. A random site-disorder model with 6% non-magnetic Mg on the Dy site
was assumed, and Si�0 for atomic positions occupied by Mg. Ising variables were
initially assigned at random, and then refined against experimental data in order to
minimize the sum of squared residuals,

w2¼W
X

Q

Icalc Qð Þ� Iexpt Qð Þ
s Qð Þ

� �2

; ð2Þ

where I(Q) is the magnetic total-scattering intensity at Q, subscripts ‘calc’ and
‘expt’ denote calculated and experimental intensities, respectively, s(Q) is an
experimental uncertainty, and W is an empirical weighting factor. For data
collected on GEM, a refined flat-in-Q background term was included in
the calculated I(Q). For data collected at Tr0.35 K, we obtain
Icalc(Q)¼ IBragg(Q)þ Idiffuse(Q)� Irandom(Q), where subscripts ‘Bragg’, ‘diffuse’
and ‘random’ indicate magnetic Bragg, magnetic diffuse and high-temperature
contributions, respectively. Here, Irandom(Q)¼ 2

3C[mf(Q)/mB]2, where the constant
C¼ (gnre/2)2¼ 0.07265 barn and f(Q) is the Dy3þ magnetic form factor54. The
Bragg and diffuse contributions were separated by applying the identity
Si�hSiiþDSi to each atomic position55, where the average spin direction hSii
is obtained by vector averaging the supercell onto a single unit cell, and the local
spin fluctuation DSi�Si�hSii. The Bragg contribution is given by

IBragg Qð Þ¼C
f Qð Þ
mB

� �22p2Nc

NV

X
G

F? Gð Þ
�� ��2

G2
R Q�Gð Þ; ð3Þ

in which G is a reciprocal lattice vector with length G, V is the volume of the
unit cell, Nc is number of unit cells in the supercell, R(Q�G) is the resolution
function determined from Rietveld refinement56. The magnetic structure factor
F>(G)¼

P
ihSii> exp(iG � ri), where supercript ‘>’ indicates projection

perpendicular to G, and the sum runs over all atomic positions in the unit cell.
The diffuse contribution is given by

Idiffuse Qð Þ ¼ C
f Qð Þ
mB

� �2 1
N

2
3

X
i

DSij j2 þ
X
j 6¼ i

Aij
sinQrij

Qrij
þBij

sin Qrij

Qrij
� �3 �

cos Qrij

Qrij
� �2

 !" #8<
:

9=
;;
ð4Þ

where sums run over all atomic positions in the supercell, rij is the radial
distance between positions i and j, and the correlation coefficients
Aij¼DSi �DSj� (DSi � rij)(DSj � rij)/r2

ij and Bij¼ 3(DSi � rij)(DSj � rij)/r2
ij �DSi �DSj

(refs 53,57). For data collected at TZ0.5 K, which show no magnetic Bragg
scattering, we obtain Icalc(Q)¼ Idiffuse(Q)� Irandom(Q), where Si replaces DSi

everywhere. All refinements employed the Metropolis algorithm with single-spin
flip dynamics, and were performed for 200 proposed flips per spin, after which
no significant reduction in w2 was observed. Fits-to-data at T¼ 0.03, 0.20, 0.50,
0.60, 0.90, 2.0 and 4.0 K are shown in Supplementary Fig. 7.

Monte Carlo simulations. Simulations were performed for the dipolar spin
ice model27,58, extended to the geometry of interest in this work. The model
is defined for Ising spins Si¼msi êi , which are constrained to point along the
local easy-axis directions êi and can thus be described by the Ising pseudospin
variables, si¼±1. The Hamiltonian comprises an exchange term of strength
J between nearest-neighbour spins hi, ji, and long-range dipolar interactions
of characteristic strength D¼ (m0/4p)m2/r3

nn between all pairs of spins, where
mE10 mB is the magnitude of the Dy3þ spin and rnn is the nearest-neighbour
distance of the lattice. The Hamiltonian is thus given by

H¼� J
X

i;jh i
sisj êi � êj

� �
þDr3

nn

X
i4j

sisj
êi � êj

r3
ij
� 3 êi � rij

� �
êj � rij
� �

r5
ij

 !
; ð5Þ
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where rij is the vector of length rij connecting spins i and j. We use D¼ 1.28 K as
calculated from experimentally determined Dy-Dy distances, and J¼ � 3.72 K
from Dy2Ti2O7 (ref. 27), which has a similar Dy environment to Dy3Mg2Sb3O14

(ref. 22) (Supplementary Fig. 3). We treat the long-range dipolar interactions using
Ewald summation58,59 with tinfoil boundary conditions at infinity. In simulations
including site disorder, non-magnetic ions are simulated by setting the
corresponding si to zero. Our unit cell comprises three stacked kagome layers,
each layer made from four kagome triangles. The whole system comprises
N¼ 7776 spins in total, commensurate with the possible

ffiffiffi
3
p
�

ffiffiffi
3
p

spin-ordered
state found in 2D (ref. 8). We use both single-spin flip and loop dynamics58,60, with
Metropolis weights. Loop dynamics are necessary to ensure ergodicity at low
temperatures and explore possible long-range spin-ordered states. We use the short
loop algorithm58,60. One Monte Carlo sweep is defined as N single spin-flip
attempts, followed by the proposal of loop moves until the cumulative number of
proposed spin-flips (in the loops) is at least N. We use an annealing protocol,
initializing the system at high temperature with B104N single spin-flip attempts,
then decrease the temperature incrementally. After each temperature decrement,
the system is updated with B103 Monte Carlo sweeps to ensure equilibration
before collecting data every B10 Monte Carlo sweeps. Powder-averaged magnetic
neutron-scattering patterns calculated from Monte Carlo are shown in
Supplementary Fig. 9.

Data availability. The underlying research materials can be accessed at the
following location: http://dx.doi.org/10.17863/CAM.4902.
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